Skip to main content

Advertisement

Log in

Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Air pollution in developing countries has recently become a serious environmental problem, which needs more active air quality monitoring and analyses. To assess air quality characteristics over the city of Zahedan, southeast Iran, airborne particulate matter (PM) concentrations with aerodynamic diameters of <10, <2.5, and <1.0 μm were measured during the period July 2008 to March 2010 using an Environmental Dust Monitor (EDM-180). The data were analyzed on a daily, monthly, and seasonal basis. The highest monthly mean PM10 levels (172 μg m−3) were recorded during the summer period (June–August), presumably due to frequent dust storms from the nearby Sistan desert located to the north, while less PM10 concentrations are recorded in winter (December–February; 101 μg m−3). Linear regression analysis between the PM2.5 and PM10 time series reveals high correlation coefficients (r > 0.82) for all seasons, implying that PM10 and PM2.5 may have the same source regions or that they are influenced by the same local conditions. In contrast, neutral correlation is found between PM10 and PM1.0 in autumn and winter. Taking into account that the annual variation of PM1.0 exhibits a clear pattern of peaking in winter and dropping in summer (in contrast to PM10), it is suspected that PM1.0 is of different origin than PM10 and mainly influenced by local anthropogenic emissions. The daily PM10 variation is strongly seasonally defined. The maximum PM10 concentrations occur in the morning hours during winter, autumn (September–November), and early spring (March), while in summer, PM10 concentrations increase significantly in the afternoon, closely associated with the intense northerly winds blowing from the desert. As far as the Air Quality Index (AQI) is concerned, its highest monthly values occur in summer, while they are reduced in winter. Desert dust aerosols are found to be the major component in determining the AQI in Zahedan. The analysis shows that 15.3% of the days are unhealthy for sensitive people, while 2% are considered as hazardous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akyuz M, Cabuk H (2009) Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 170:13–21

    Article  Google Scholar 

  • Alam K, Trautmann T, Blaschke T (2011a) Aerosol optical properties and radiative forcing over mega-city Karachi. Atmos Res. doi:10.1016/j.atmosres.2011.05.007

  • Alam K, Qureshi T, Blaschke T (2011b) Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ. doi:10.16/j.atmosenv.2011.05.055, in press

  • Ardakani SQ (2006) Determine the air quality in Iran in (2004). J Environ Sci Technol 8(4, Winter):33–38, In Persian

    Google Scholar 

  • Badarinath KVS, Kumar Kharol S, Kaskaoutis DG, Kambezidis HD (2007) Dust storm over Indian region and its impact on the ground reaching solar radiation—a case study using multi-satellite data and ground measurements. Sci Total Environ 384:316–332

    Article  CAS  Google Scholar 

  • Badarinath KVS, Kharol SK, Reddy RR, Rama Gopal K, Narasimhulu K, Siva Sankara Reddy L, Raghavendra Kumar K (2009) Black carbon aerosol mass concentration variation in urban and rural environments of India—a case study. Atmos Sci Lett 10:29–33

    Article  Google Scholar 

  • Bartzokas A, Kassomenos P, Petrakis M, Celessides C (2004) The effect of meteorological and pollution parameters on the frequency of hospital admissions for cardiovascular and respiratory problems in Athens. Indoor and Built Environ 13:271–275

    Article  Google Scholar 

  • Bhaskaran K, Wilkinson P, Smeeth L (2011) Cardiovascular consequences of air pollution: what are the mechanisms? Heart 97:519–520

    Article  Google Scholar 

  • Broecker WS (2000) Abrupt climate change: causal constraints provided by the paleoclimate record. Earth Sci Rev 51:137–154

    Article  Google Scholar 

  • Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, Keeler G, Morishita M, Marsik FJ, Kamal AS, Kaciroti N, Harkema J, Corey P, Silverman F, Gold DR, Wellenius G, Mittleman MA, Rajagopalan S, Brooky JR (2009) Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54(3):659–667

    Article  CAS  Google Scholar 

  • Chakra ORA, Joyeux M, Nerriere E, Strub MP, Zmirou-Navier D (2007) Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study. Chemosphere 66:1375–1381

    Article  Google Scholar 

  • Chaloulakou A, Kassomenos P, Spyrelis N, Demokritou P, Koutrakis P (2003) Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmos Envir 37:649–660

    Article  CAS  Google Scholar 

  • Cheraghi M (2001) Evaluation and comparison of air quality in Tehran and Isfahan in 1999 and offering solutions to improve it. M.Sc. thesis of the Environment, Natural Resources Faculty of Tehran University, 150 pp (in Persian)

  • Cogliani E (2001) Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables. Atmos Environ 35:2871–2877

    Article  CAS  Google Scholar 

  • Coz E, Gómez-Moreno FJ, Pujadas M, Casuccio GS, Lersch TL, Artinano B (2009) Individual particle characteristics of North African dust under different long-range transport scenarios. Atmos Environ 43(11):1850–1863

    Article  CAS  Google Scholar 

  • de Wekker SF, Zhong JS, Fast JD, Whiteman CD (1998) A numerical study of the thermally driven plain-to-basin wind over idealized basin topographies. J Appl Meteor 37:606–622

    Article  Google Scholar 

  • Dockery D, Pope A (1996) Epidemiology of acute health effects: summary of time-series studies. In: Wilson R, Spengler JD (eds) Particles in our air: concentrations and health effects. Harvard University Press, Cambridge, pp 123–147

    Google Scholar 

  • Dockery D, Pope CA, Xiping X, Spengler J, Ware J, Fay M, Ferris B, Spiezer F (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759

    Article  CAS  Google Scholar 

  • Engelstaedter S, Tegen I, Washington R (2006) North African dust emissions and transport. Earth-Sci Rev 79:73–100

    Article  Google Scholar 

  • Environmental Protection Agency (EPA) (1999) Guideline for reporting the daily air quality—air quality index (AQI). EPA-454/R-99-010. Office of Air Quality Planning and Standards, Research Triangle Park

    Google Scholar 

  • Gautam R, Liu Z, Singh RP, Hsu NC (2009) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36:L06813. doi:10.1029/2008GL036967

    Article  Google Scholar 

  • Gobbi GP, Barnaba F, Ammannato L (2007) Estimating the impact of Saharan dust on the year 2001 PM10 record of Rome, Italy. Atmos Environ 41:261–275

    Article  CAS  Google Scholar 

  • Godoy L, Godoy JLA, Roldão L (2009) Coarse and fine aerosol source apportionment in Rio de Janeiro, Brazil. Atmos Environ 43(14):2366–2374

    Article  CAS  Google Scholar 

  • Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth-Sci Rev 56:179–204

    Article  CAS  Google Scholar 

  • Gupta P, Christopher SA, Wang J, Gehrig R, Lee YC, Kumar N (2006) Satellite remote sensing of particulate matter and air quality over global cities. Atmos Environ 40:5880–5892

    Article  CAS  Google Scholar 

  • Hahn DG, Manabe S (1975) The role of mountains in the South Asian monsoon circulation. J Atmos Sci 32:1515–1541

    Article  Google Scholar 

  • Hess AM, Koepke P, Schult I (1998) Optical properties of aerosol and clouds: the software package OPAC. Bull Am Meteorol Soc 79:831–844

    Article  Google Scholar 

  • Hoff R, Christopher SA (2009) Remote sensing of particulate matter air pollution from space: have we reached the promised land? J Air Waste Manage Assoc 59:642–675. doi:10.3155/1047-3289.59.6.642

    Article  Google Scholar 

  • Hossenzadeh SR (1997) One hundred and twenty days winds of Sistan. Iran Iranian J Res Geography 46:103–127, in Persian

    Google Scholar 

  • Husar RB, Prospero JM, Stowe LL (1997) Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J Geophys Res 102:16889–16909

    Article  CAS  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jalaludin BB, O’Toole BI, Leeder SR (2004) Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children. Environ Res 95:32–42

    Article  CAS  Google Scholar 

  • Kalashnikova OV, Kahn RA (2008) Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals. J Geophys Res 113:D24204. doi:10.1029/2008JD010083

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Nastos PT, Kosmopoulos PG (2008) Study on an intense dust storm over Greece. Atmos Environ 42:6884–6896

    Article  CAS  Google Scholar 

  • Kaskaoutis DG, Kambezidis, HD, Badarinath KVS, Kumar Kharol S (2010) Dust storm identification via satellite remote sensing. ISBN: 978-1-60876-906-3

  • Larissi IK, Koukouletsos KV, Moustris KP, Antoniou A, Paliatsos AG (2010) PM10 concentration levels in the greater Athens area, Greece. Fresen Environ Bull 19:226–231

    CAS  Google Scholar 

  • Madhavan BL, Niranjan K, Sreekanth V, Sarin MM, Sudheer AK (2008) Aerosol characterization during the summer monsoon period over a tropical coastal Indian station, Visakhapatnam. J Geophys Res 113:D21208. doi:10.1029/2008JD010272

    Article  Google Scholar 

  • Mahowald N, Baker A, Bergametti G, Brooks N, Duce R, Jickells T, Kubilay N, Prospero J, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeoch Cycles 19:GB4025. doi:10.1029/2004GB002402

    Article  Google Scholar 

  • Middleton NJ (1986) Dust storms in the Middle East. J Arid Environ 10:83–96

    Google Scholar 

  • Mishchenko MI, Geogdzhayev IV (2007) Satellite remote sensing reveals regional tropospheric aerosol trends. Opt Express 15:7423–7438

    Article  Google Scholar 

  • Mohan M, Kandya A (2007) An analysis of the annual and seasonal trends of air quality index of Delhi. Environ Monit Assess 131:267–277

    Article  CAS  Google Scholar 

  • Mousavi G, Nadafy RK (2000) Comparative study of air quality in Tehran in 1997 and 1998. The Third National Conference on Environmental Health, Kerman, pp 47–50 (in Persian)

  • Nastos T, Athanasios G, Michael B, Eleftheria SR, Kostas NP (2010) Outdoor particulate matter and childhood asthma admissions in Athens, Greece: a time-series study. Environ Health 9(45):1–9

    Google Scholar 

  • Nikolaou K, Basbas S, Taxiltaris C (2004) Assessment of air pollution indicators in an urban area using the DPSIR model. Fresenius Environ Bull 13:820–830

    CAS  Google Scholar 

  • Nriagu JO (1988) A salient epidemic of environmental metal poisoning? Environ Pollut 50:139–161

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils with trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Ozer P, Bechir M, Laghdaf OM, Gassani J (2006) Estimation of air quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal visibility data. Water Air Soil Pollut 178:79–87

    Article  Google Scholar 

  • Paliatsos AG, Priftis KN, Ziomas IC, Panagiotopoulou-Gartagani P, Nikolaou-Panagiotou A, Tapratzi-Potamianou P, Zachariadi-Xypolita A, Nicolaidou P, Saxoni-Papageorgiou P (2006) Association between ambient air pollution and childhood asthma in Athens, Greece. Fresen Environ Bull 15:614–618

    CAS  Google Scholar 

  • Pandithurai G, Pinker RT, Devara PCS, Takamura T, Dani KK (2007) Seasonal asymmetry in diurnal variation of aerosol optical characteristics over Pune, western India. J Geophys Res 112:D08208. doi:10.1029/2006JD007803

    Article  Google Scholar 

  • Pathak BG, Kalita G, Bhuyan K, Bhuyan PK, Krishna Moorthy K (2010) Aerosol temporal characteristics and its impact on shortwave radiative forcing at a location in the northeast of India. J Geophys Res 115:D19204. doi:10.1029/2009JD013462

    Article  Google Scholar 

  • Pérez N, Pey J, Querol X, Alastuey A, López JM, Viana M (2008) Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos Environ 42:1677–1691

    Article  Google Scholar 

  • Pope CA (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk? Environ Health Perspect 108:713–723

    Article  CAS  Google Scholar 

  • Pozzi R, De Berardis B, Paoletti L, Guastadisegni C (2005) Winter urban air particles from Rome (Italy): effects on the monocytic–macrophagic RAW264.7 cell line. Environ Res 99:344–354

    Article  CAS  Google Scholar 

  • Prasad AK, Singh S, Chauhan SS, Srivastava MK, Singh RP, Singh R (2007) Aerosol radiative forcing over the Indo-Gangetic Plains during major dust storms. Atmos Environ 41:6289–6301

    Article  CAS  Google Scholar 

  • Ramachandran S, Kedia S (2010) Black carbon aerosols over an urban region: radiative forcing and climate impact. J Geophys Res 115:D10202. doi:10.1029/2009JD013560

    Article  Google Scholar 

  • Ramachandran S, Rajesh TA (2007) Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada and USA. J Geophys Res 112:D06211. doi:10.1029/2006JD007488

    Article  Google Scholar 

  • Schwartz J (2004) Air pollution and children’s health. Pediatrics 113:1037–1043

    Google Scholar 

  • Singh RP, Dey S, Tripathi SN, Tare V, Holben B (2004) Variability of aerosol parameters over Kanpur, northern India. J Geophys Res 109:D23206. doi:10.1029/2004JD004966

    Article  Google Scholar 

  • Sivagangabalan G, Spears D, Masse S, Urch B, Brook RD, Silverman F, Gold DR, Lukic KZ, Speck M, Kusha M, Farid T, Poku K, Shi E, Floras J, Nanthakumar K (2010) Mechanisms of increased arrhythmic risk associated with exposure to urban air pollution. Circulation 122:A17901

    Google Scholar 

  • Sun Y, Zhuang G, Yun H, Zhang X, Guo J (2004) Characteristics and sources of 2002 super dust storm in Beijing. China Sci Bull 49:698–705

    CAS  Google Scholar 

  • Triantafyllou AG, Evagelopoulos V, Zoras S (2006) Design of a web-based information system for ambient environmental data. J Environ Manage 80:230–236

    Article  CAS  Google Scholar 

  • USEPA (2006) Guideline for reporting of daily air quality: air quality index. Environmental Protection Agency, Washington, p 17

    Google Scholar 

  • Washington R, Todd MC, Middleton NJ, Goudie AS (2003) Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Annals of the Association of American Geographers 93:297–313

    Article  Google Scholar 

  • Wilson AM, Salloway JC, Wake CP, Kelly T (2004) Air pollution and demand for hospital services: a review. Environ Int 30:1109–1118

    Article  CAS  Google Scholar 

  • Zhao X, Zhuang G, Wang Z, Sun Y, Wang Y, Yuan H (2007) Variation of sources and mixing mechanism of mineral dust with pollution aerosol in a super dust storm—revealed by the two peaks of a super dust storm in Beijing. Atmos Res 84:265–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff at the Environmental Research Centre of Zahedan for providing assistance for this work, especially Reza Mirshekar and Tooraj Hemati who kindly provided the PM and air pollution data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Rashki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashki, A., Rautenbach, C.J.d., Eriksson, P.G. et al. Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Qual Atmos Health 6, 123–135 (2013). https://doi.org/10.1007/s11869-011-0152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-011-0152-5

Keywords

Navigation