Skip to main content

Advertisement

Log in

Long-term analysis of NO2, CO, and AOD seasonal variability using satellite observations over Asia and intercomparison with emission inventories and model

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Long-term analysis of tropospheric nitrogen dioxide (NO2) columns retrieved from GOME, SCIAMACHY, OMI and GOME-2 satellites, carbon monoxide (CO) columns from MOPITT satellite, and aerosol optical depths (AODs) from MODIS satellite was performed for Southeast Asian countries including Japan and China during 1996–2012. The results show that significant increasing levels of tropospheric NO2 columns can be clearly observed during the study period, especially above the eastern regions of China. The cities located in different latitude zones present the seasonal cycle of NO2 columns, CO columns, and AODs differently. For the cities located around mid-latitude zone, the maximum levels of NO2 and CO columns can be observed in the winter (November–March) and the minimum in the summer (June–September). On the contrary, the maximum levels for the cities near Equator zone are revealed in dry season (June–October). In the case of AODs, the maximum peaks normally occur during biomass burning season. Ground monitoring concentrations of NO2, CO, and PM10 were also comparably analyzed with satellite NO2 columns, CO columns, and AODs, respectively. Anthropogenic and biomass burning emissions were derived to investigate the consistency with satellite retrievals. The results show that satellite observations are able to capture the trend and seasonal variability of the emissions and ground concentrations. The model simulations were conducted using CMAQ model. Generally, simulated model results agree well with those retrieved from satellite measurements for spatial distribution and seasonal pattern. However, the modeled results underestimate satellite data probably due to the inaccuracy in emission inventories, the inaccuracy of spatial and temporal allocations, and the uncertainties in the satellite retrievals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Akimoto H (2003) Global air quality and pollution. Science 302(5651):1716–1719. doi:10.1126/science.1092666

    Article  CAS  Google Scholar 

  • Barnes WL, Pagano TS, Salomonson V (1998) Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AMI. IEEE Trans Geosci Remote Sens 36(4):1088–1100

    Article  Google Scholar 

  • Beverland IJ, Crowther JM, Srinivas MSN, Heal MR (1998) The influence of meteorology and atmospheric transport patterns on the chemical composition of rainfall in south-east England. Atmos Environ 32(6):1039–1048. doi:10.1016/S1352-2310(97)00365-8

    Article  CAS  Google Scholar 

  • Bey I, Jacob DJ, Yantosca RM et al (2001) Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation. J Geophys Res 106(D19):23073. doi:10.1029/2001JD000807

    Article  CAS  Google Scholar 

  • Blond N, Boersma KF, Eskes HJ et al. (2007) Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe. J Geophys Res 112(D10). doi: 10.1029/2006JD007277

  • Boersma KF, Eskes HJ, Brinksma EJ (2004) Error analysis for tropospheric NO2 retrieval from space. J Geophys Res 109(D4). doi: 10.1029/2003JD003962

  • Boersma KF, Eskes HJ, Dirksen RJ et al (2011) An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos Meas Tech 4:1905–1928. doi:10.5194/amt-4-1905-2011

    Article  CAS  Google Scholar 

  • Boersma KF, Eskes HJ, Veefkind JP et al (2007) Near real-time retrieval of tropospheric NO2 from OMI. Atmos Chem Phys 7(8):2103–2118. doi:10.5194/acp-7-2103-2007

    Article  CAS  Google Scholar 

  • Bonnet S, Suwanprik N, Garivait S (2006) Potential Impact of Biomass Burning on Urban Air Quality : Case-study of Chiang Mai. Paper presented at The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006)”, Bangkok, Thailand, 21–23 November 2006

  • Bovensmann H, Burrows JP, Buchwitz M et al. (1999) SCIAMACHY: Mission Objectives and Measurement Modes. J Atmos Sci 56(2):127–150. doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2

  • Bucsela EJ, Krotkov NA, Celarier EA et al (2013) A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI. Atmos Meas Tech Discuss 6:1361–1407. doi:10.5194/amtd-6-1361-2013

    Article  Google Scholar 

  • Burrows JP, Weber M, Buchwitz M et al. (1999) The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results. J Atmos Sci 56(2):151–175. doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2

  • Byun DW, Ching JKS (1999) Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system, EPA/600/R-99/030. United States Environmental Protection Agency. USA, Washington DC

    Google Scholar 

  • Callies J, Corpaccioli E, Eisinger M, Hahne A and Lefebvre A (2000) GOME-2 - MetOp's Second Generation Sensor for Operational Ozone Monitoring. ESA Bulletin No. 102

  • Celarier EA, Brinksma EJ, Gleason JF et al. (2008) Validation of ozone monitoring instrument nitrogen dioxide columns. J Geophys Res 113(D15S15). doi: 10.1029/2007JD008908

  • Christian HJ, Blakeslee RJ, Boccippio DJ et al (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res 108(D1):4005. doi:10.1029/2002JD002347

    Article  Google Scholar 

  • Chu, DA, Kaufman YJ, Ichoku C et al. (2002) Validation of MODIS aerosol optical depth retrieval over land, Geophys Res Lett, 29(12). doi: 10.1029/2001GL013205

  • Chu DA, Kaufman YJ, Zibordi G et al (2003) Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J Geophys Res 108(D21):4661. doi:10.1029/2002JD003179

    Article  Google Scholar 

  • de Laat ATJ, Gloudemans AMS, Aben I, Schrijver H (2010) Global evaluation of SCIAMACHY and MOPITT carbon monoxide column differences for 2004–2005. J Geophys Res 115(D6). doi: 10.1029/2009JD012698

  • Deeter MN, Edwards DP, Gille JC, Drummond JR (2007) Sensitivity of MOPITT observations to carbon monoxide in the lower troposphere. J Geophys Res 112(D24). doi: 10.1029/2007JD008929

  • Deeter MN, Emmons LK, Francis GL et al. (2004) Evaluation of operational radiances for the Measurements of Pollution in the Troposphere (MOPITT) instrument CO thermal band channels. J Geophys Res 109(D3). doi: 10.1029/2003JD003970

  • Diehl T, Heil A, Chin M et al (2012) Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos Chem Phys Discuss 12(9):24895–24954. doi:10.5194/acpd-12-24895-2012

    Article  Google Scholar 

  • Drummond JR (1992) Measurements of pollution in the troposphere (MOPITT). In: Gille JC, Visconti G (eds) The use of EOS for Studies of Atmospheric Physics. North Holland, Amsterdam, pp 77–101

    Google Scholar 

  • Edwards DP, Emmons LK, Gille JC et al. (2006) Satellite-observed pollution from Southern Hemisphere biomass burning. J Geophys Res 111(D14). doi: 10.1029/2005JD006655

  • Edwards DP, Emmons LK, Hauglustaine DA et al. (2004) Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability. J Geophys Res 109(D24). doi: 10.1029/2004JD004727

  • EIA (U.S. Energy Information Administration). International Energy Statistic. http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm. Accessed 14 February 2013

  • Emmons LK, Deeter MN, Gille JC et al. (2004) Validation of Measurements of Pollution in the Troposphere (MOPITT) CO retrievals with aircraft in situ profiles. J Geophys Res 109(D3). doi: 10.1029/2003JD004101

  • Emmons LK, Edwards DP, Deeter MN et al (2009) Measurements of pollution in the troposphere (MOPITT) validation through 2006. Atmos Chem Phys 9(5):1795–1803. doi:10.5194/acp-9-1795-2009

    Article  CAS  Google Scholar 

  • Emmons LK, Pfister GG, Edwards DP et al. (2007) Measurements of Pollution in the Troposphere (MOPITT) validation exercises during summer 2004 field campaigns over North America. J Geophys Res 112(D12). doi: 10.1029/2006JD007833

  • Engel-Cox JA, Hoff RM, Rogers R et al (2006) Integrating lidar and satellite optical depth with ambient monitoring for three-dimensional particulate characterization. Atmos Environ 40(40):8056–8067. doi:10.1016/j.atmosenv.2006.02.039

    Article  CAS  Google Scholar 

  • Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ 38(16):2495–2509. doi:10.1016/j.atmosenv.2004.01.039

    Article  CAS  Google Scholar 

  • Fujimoru S, Matsuoka Y (2011) Development of method for estimation of world industrial energy consumption and its application. Energy Econ 33(3):461–473. doi:10.1016/j.eneco.2011.01.010

    Article  Google Scholar 

  • Galanter M, Levy H, Carmichael GR (2000) Impacts of biomass burning on tropospheric CO, NOx, and O3. J Geophys Res 105(D5):6633–6653. doi:10.1029/1999JD901113

    Article  CAS  Google Scholar 

  • Ghude SD, van der ARJ, Beig G et al (2009) Satellite derived trends in NO2 over the major global hotspot regions during the past decade and their inter-comparison. Environ Pollut 157(6):1873–1878. doi:10.1016/j.envpol.2009.01.013

    Article  CAS  Google Scholar 

  • Ghude SD, Fadnavis S, Beig G et al. (2008) Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO2 over India. J Geophys Res 113(D20). doi: 10.1029/2007JD009615

  • Gloudemans AMS, De Laat ATJ, Schrijver H et al (2009) SCIAMACHY CO over land and oceans: 2003–2007 interannual variability. Atmos Chem Phys 9(11):3799–3813. doi:10.5194/acp-9-3799-2009

    Article  CAS  Google Scholar 

  • Granier C, Bessagnet B, Bond T et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Chang 109(1–2):163–190. doi:10.1007/s10584-011-0154-1

    Article  CAS  Google Scholar 

  • Granier C, Pétron G, Müller J-F, Brasseur G (2000) The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos Environ 34:5255–5270. doi:10.1016/S1352-2310(00)00299-5

    Article  CAS  Google Scholar 

  • Guo J-P, Zhang X-Y, Wu Y-R et al (2011) Spatiotemporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos Environ 45(37):6802–6811. doi:10.1016/j.atmosenv.2011.03.068

    Article  CAS  Google Scholar 

  • Gupta P, Christopher SA, Box MA, Box GP (2007) Multiyear satellite remote sensing of particulate matter air quality over Sydney, Australia. Int J Remote Sens 28(20):4483–4498. doi:10.1080/01431160701241738

    Article  Google Scholar 

  • Gupta P, Christopher SA, Wang J et al (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40(30):5880–5892. doi:10.1016/j.atmosenv.2006.03.016

    Article  CAS  Google Scholar 

  • Han KM, Lee CK, Lee J et al (2011) A comparison study between model-predicted and OMI-retrieved tropospheric NO2 columns over the Korean peninsula. Atmos Environ 45:2962–2971. doi:10.1016/j.atmosenv.2010.10.016

    Article  CAS  Google Scholar 

  • Han KM, Song CH, Ahn HJ et al (2009) Investigation of NOx emissions and NOx-related chemistry in East Asia using CMAQ-predicted and GOME-derived NO2 columns. Atmos Chem Phys 9(17):1017–1036

    Article  CAS  Google Scholar 

  • He Q, Li C, Geng F, Lei Y, Li Y (2012) Study on long-term aerosol distribution over the land of east China using MODIS data. Aerosol Air Qual Res 12:304–319. doi:10.4209/aaqr.2011.11.0200

    Google Scholar 

  • He Y, Uno I, Wang Z et al (2007) Variations of the increasing trend of tropospheric NO2 over central east China during the past decade. Atmos Environ 41(23):4865–4876. doi:10.1016/j.atmosenv.2007.02.009

    Article  CAS  Google Scholar 

  • Heland J, Schlager H, Richter A, Burrows JP (2002) First comparison of tropospheric NO2 column densities retrieved from GOME measurements and in situ aircraft profile measurements. Geophys Res Lett 29(20):1983. doi:10.1029/2002GL015528

    Article  Google Scholar 

  • Irie H, Yamaji K, Ikeda K et al (2013) An evaluation of the CMAQ reproducibility of satellite tropospheric NO2 column observations at different local times over East Asia. Atmos Chem Phys Discuss 13:14037–14067. doi:10.5194/acpd-13-14037-2013

    Article  Google Scholar 

  • Itahashi S, Uno I, Irie H, Kurokawa J, Ohara T (2013) Trend analysis of tropospheric NO2 column density over East Asia during 2000–2010: multi-satellite observations and model simulations with the updated REAS emission inventory. Atmos Chem Phys Discuss 13:11247–11268. doi:10.5194/acpd-13-11247-2013

    Article  Google Scholar 

  • Koelemeijer RBA, Homan CD, Matthijsen J (2006) Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos Environ 40(27):5304–5315. doi:10.1016/j.atmosenv.2006.04.044

    Article  CAS  Google Scholar 

  • Kim S-W, Yoon S-C, Kim J, Kim S-Y (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos Environ 41(8):1634–1651. doi:10.1016/j.atmosenv.2006.10.044

    Article  CAS  Google Scholar 

  • Lamarque J-F, Bond TC, Eyring V et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039. doi:10.5194/acp-10-7017-2010

    Article  CAS  Google Scholar 

  • Levelt P, Van den Oord GHJ, Dobber MR et al (2006) The ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1093–1101. doi:10.1109/TGRS.2006.872333

    Article  Google Scholar 

  • Levy RC, Remer LA, Dubovik O (2007a) Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J Geophys Res 112(D13). doi: 10.1029/2006JD007815

  • Levy RC, Remer LA, Mattoo S et al. (2007b) Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res 112(D13). doi: 10.1029/2006JD007811

  • Lin J-T, McElroy MB, Boersma KF (2010) Constraint of anthropogenic NOx emissions in China from different sectors: a new methodology using multiple satellite retrievals. Atmos Chem Phys 10:63–78. doi:10.5194/acp-10-63-2010

    Article  CAS  Google Scholar 

  • Liu Y, Franklin M, Kahn R, Koutrakis P (2007) Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS. Remote Sens Environ 107(1–2):33–44. doi:10.1016/j.rse.2006.05.022

    Article  Google Scholar 

  • Ma J, Richter A, Burrows JP et al (2006) Comparison of model-simulated tropospheric NO2 over China with GOME-satellite data. Atmos Environ 40(4):593–604. doi:10.1016/j.atmosenv.2005.09.029

    Article  CAS  Google Scholar 

  • Martin RV, Parrish DD, Ryerson TB et al. (2004) Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States. J Geophys Res 109(D24). doi: 10.1029/2004JD004869

  • Paramee S, Chidthaisong A, Towprayoon S et al (2005) Three-year monitoring results of nitrate and ammonium wet deposition in Thailand. Environ Monit Assess 102(1–3):27–40. doi:10.1007/s10661-005-1593-9

    Article  CAS  Google Scholar 

  • Pelletier B, Santer R, Vidot J (2007) Retrieving of particulate matter from optical measurements: A semiparametric approach. J Geophys Res 112(D6). doi: 10.1029/2005JD006737

  • Richter A, Burrows JP, Nüss H et al (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437(7005):129–132. doi:10.1038/nature04092

    Article  CAS  Google Scholar 

  • Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1057. doi:10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Shi C, Fernando HJS, Wang Z et al (2008) Tropospheric NO2 columns over East Central China: comparisons between SCIAMACHY measurements and nested CMAQ simulations. Atmos Environ 42(30):7165–7173. doi:10.1016/j.atmosenv.2008.05.046

    Article  CAS  Google Scholar 

  • Shindell DT, Faluvegi G, Stevenson DS et al. (2006) Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. J Geophys Res 111(D19). doi: 10.1029/2006JD007100

  • Solomon S, Portmann RW, Sanders RW et al (1999) On the role of nitrogen dioxide in the absorption of solar radiation. J Geophys Res 104(D10):12047–12058. doi:10.1029/1999JD900035

    Article  CAS  Google Scholar 

  • Streets DG, Yarber KF, Woo J-H, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Glob Biogeochem Cycles 17(4):1099. doi:10.1029/2003GB002040

    Google Scholar 

  • Sun YL, Wang ZF, Fu PQ et al (2013) Aerosol composition, sources, and processes during wintertime in Beijing, China. Atmos Chem Phys 13:4577–4592. doi:10.5194/acp-13-4577-2013

    Article  CAS  Google Scholar 

  • Tsai T-C, Jeng Y-J, Chu DA et al (2011) Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos Environ 45(27):4777–4788. doi:10.1016/j.atmosenv.2009.10.006

    Article  CAS  Google Scholar 

  • Uno I, He Y, Ohara T et al (2007) Systematic analysis of interannual and seasonal variations of model-simulated tropospheric NO2 in Asia and comparison with GOME-satellite data. Atmos Chem Phys 7(6):1671–1681. doi:10.5194/acp-7-1671-2007

    Article  CAS  Google Scholar 

  • van der A RJ, Eskes HJ, Boersma KF et al. (2008) Trends, seasonal variability and dominant NOx source derived from a ten year record of NO 2 measured from space. J Geophys Res 113(D4). doi: 10.1029/2007JD009021

  • van der A RJ, Peters DHMU, Eskes H et al. (2006) Detection of the trend and seasonal variation in tropospheric NO2 over China. J Geophys Res 111(D12). doi: 10.1029/2005JD006594

  • van der Werf GR, Randerson JT, Giglio L et al (2006) Interannual variability of global biomass burning emissions from 1997 to 2004. Atmos Chem Phys Discuss 6(2):3175–3226. doi:10.5194/acpd-6-3175-2006

    Article  Google Scholar 

  • Velders GJM, Granier C, Potmann RW et al (2001) Global tropospheric NO2 columns distributions comparing three-dimensional model calculations with GOME measurements. J Geophys Res 106(D12):12643–12660

    Article  CAS  Google Scholar 

  • Wang J, Christopher SA (2003) Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys Res Lett 30(21):2095

    Article  Google Scholar 

  • Xin J, Wang L, Wang Y, Li Z, Wang P (2011) Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010. Atmos Environ 45(35):6317–6325. doi:10.1016/j.atmosenv.2011.08.052

    Article  CAS  Google Scholar 

  • Yienger JJ, Levy H II (1995) Empirical model of global soil-biogenic NOχ emissions. J Geophys Res 100(D6):11447–11464. doi:10.1029/95JD00370

    Article  CAS  Google Scholar 

  • Yurganov LN, Duchatelet P, Dzhola AV et al (2005) Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space. Atmos Chem Phys 5(2):563–573. doi:10.5194/acp-5-563-2005

    Article  CAS  Google Scholar 

  • Zhang G, Li J, Li X-D et al (2010) Impact of anthropogenic emissions and open biomass burning on regional carbonaceous aerosols in South China. Environ Pollut 158(11):3392–3400. doi:10.1016/j.envpol.2010.07.036

    Article  CAS  Google Scholar 

  • Zhang Q, Streets DG, Carmichael GR et al (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153. doi:10.5194/acp-9-5131-2009

    Article  CAS  Google Scholar 

  • Zyrichidou I, Koukouli ME, Balis DS et al (2009) Satellite observations and model simulations of tropospheric NO2 columns over south-eastern Europe. Atmos Chem Phys 9(16):6119–6134. doi:10.5194/acp-9-6119-2009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by KAKENHI (23360232). The free use of NO2 column data are available through the Tropospheric Emission Monitoring Internet Service (TEMIS) project website. For MOPITT CO column, the data are available through the website of The Atmospheric Science Data Center (ASDC) of NASA Langley Research Center. MODIS AOD can be accessed by the website of NASA's Goddard Space Flight Center (GSFC). MACCity databases are provided by Emissions of atmospheric Compounds & Compilation of Ancillary Data (ECCAD-Ether). Ground monitoring data was obtained from Pollution Control Department (PCD), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichnaree Lalitaporn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalitaporn, P., Kurata, G., Matsuoka, Y. et al. Long-term analysis of NO2, CO, and AOD seasonal variability using satellite observations over Asia and intercomparison with emission inventories and model. Air Qual Atmos Health 6, 655–672 (2013). https://doi.org/10.1007/s11869-013-0205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-013-0205-z

Keywords

Navigation