Skip to main content
Log in

The effect of diapycnal mixing on the ventilation and CFC-11 uptake in the Southern Ocean

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The Miami Isopycnic Coordinate Ocean Model (MICOM) is used to investigate the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters in the Southern Ocean (south of 45°S). Three model experiments are performed: one with a diapycnal mixing coefficientK d (m2 s−1) of 2 × 10−7/N (Expt. 1), one withK d = 0 (Expt. 2), and one withK d = 5 × 10−8/N (Expt. 3),N (s−1) is the Brunt-Väisälä frequency. The model simulations indicate that the observed vertical distribution of CFC-11 along 88°W (prime meridian at 0°E) in the Southern Ocean is caused by local ventilation of the surface waters and westward-directed (eastward-directed) isopycnic transport and mixing from deeply ventilated waters in the Weddell Sea region. It is found that at the end of 1997, the simulated net ocean uptake of CFC-11 in Expt. 2 is 25% below that of Expt. 1. The decreased uptake of CFC-11 in the Southern Ocean accounts for 80% of this difference. Furthermore, Expts. 2 and 3 yield far more realistic vertical distributions of the ventilated CFC-waters than Expt. 1. The experiments clearly highlight the sensitivity of the Southern Ocean surface water ventilation to the distribution and thickness of the simulated mixed layer. It is argued that inclusion of CFCs in coupled climate models could be used as a test-bed for evaluating the decadal-scale ocean uptake of heat and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, L. G., and E. P. Jones, 1991: The transport of CO2 into Arctic and Antarctic Seas: Similarities and differences in the driving processes.J. Mar. Syst.,2, 81–95.

    Article  Google Scholar 

  • Arakawa, A., and V. Lamb, 1977: Computational design of the basic processes of the UCLA General Circulation Model.Methods Corn-put. Phys. 17, 174–265.

    Google Scholar 

  • Beismann, J.-O., and R. Redler, 2003: Model simulations of CFC uptake in North Atlantic Deep Water: Effects of parameterizations and grid resolution.J. Geophys. Res.,108(C5), 3159, doi:10.1029/2001JC001253.

    Article  Google Scholar 

  • Bleck, R., C. Rooth, D. Hu, and L. T. Smith, 1992: Salinity-driven thermohaline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic.J. Phys. Oceanogr.,22, 1486–1515.

    Article  Google Scholar 

  • Boutin, J., and J. Etcheto, 1997: Long-term variability of the air-sea CO2 exchange coefficient: Consequences for the CO2 fluxes in the equatorial Pacific Ocean.Global Biogeochem. Cycles,11, 453–470.

    Article  Google Scholar 

  • Dixon, K., J. Bullister, R. Gammon, and R. Stouffer, 1996: Examining a coupled climate model using CFC-11 as an ocean tracer.Geophys. Res. Lett.,23, 1957–1960.

    Article  Google Scholar 

  • Doney, S. C., and M. W. Hecht, 2002: Antarctic bottom water formation and deep-water chlorofluorocarbon distributions in a global ocean climate model.J. Phys. Oceanogr.,32, 1642–1666.

    Article  Google Scholar 

  • Dutay, J., and Coauthors, 2002: Evaluation of ocean model ventilation with CFC-11: Comparison of 13 global ocean models.Ocean Modelling,4(2), 89–120.

    Article  Google Scholar 

  • Gao, Y., H. Drange, and M. Bentsen, 2003: Effects of diapycnal and isopycnal mixing on the ventilation of CFCs in the North Atlantic in an isopycnic coordinate OGCM.Tellus,55B(3), 837–854.

    Google Scholar 

  • Gargett, A., 1984: Vertical eddy diffusivity in the ocean interior.J. Marine Res.,42(2), 359–393.

    Article  Google Scholar 

  • Gaspar, P., 1988: Modeling the seasonal cycle of the upper ocean.J. Phys. Oceanogr. 18, 161–180.

    Article  Google Scholar 

  • Killworth, P. D., 1977: Mixing on the Weddell Sea continential slope.Deep-Sea Res.,24, 427–448.

    Article  Google Scholar 

  • Ledwell, J. R., and A. J. Watson, 1993: Evidence for slow mixing across the pycnocline from an open ocean tracer-release experiment.Nature,364, 701–703.

    Article  Google Scholar 

  • Ledwell, J. R., E. Montgomery, K. Polzin, L. Laurent, and R. Schmitt, J. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean.Nature,403, 179–182.

    Article  Google Scholar 

  • Levitus, S., and T. P. Boyer, 1994:World Ocean Atlas 1994 Volume 4: Temperature. NOAA Atlas NESDIS 4, Washington, D.C., USA, 129pp.

    Google Scholar 

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994:World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3, Washington, D.C., USA, 111pp.

    Google Scholar 

  • McDougall, T., and W. Dewar, 1998: Vertical mixing, cabbeling and thermobaricity in layered models.J. Phys. Oceanogr.,28, 1458–1480.

    Article  Google Scholar 

  • Muench, R., L. Padman, S. Howard, E. Fahrbach, 2002: Upper ocean diapycnal mixing in the northwestern Weddell Sea.Deep-Sea Res.,49, 4843–4861.

    Article  Google Scholar 

  • Oberhuber, J. M., 1988: An atlas based on the “COADS” data set: The budgets of heat, buoyancy and turbulent kinetic energy at the surface of the global ocean. Tech. Rep. 15, Max-Planck-Inst. fűr Meteorol., Hamburg, Germany.

    Google Scholar 

  • Oberhuber, J. M., 1993: Simulation of the Atlantic circulation with a coupled sea ice — mixed layer — isopycnal general circulation model, Part I: Model description.J. Phys. Oceanogr.,23(5), 808–829.

    Article  Google Scholar 

  • Orr, J., and Coauthors, 2001: Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models.Global Biogeochem. Cycles,15(1), 43–60.

    Article  Google Scholar 

  • Orsi, A., G. Johnson, and J. Bullister, 1999: Circulation, mixing, and production of Antarctic Bottom Water.Prog. Oceanogr.,43, 55–109.

    Article  Google Scholar 

  • Orsi, A. H., W. M. Smethie Jr., and J. L. Bullister, 2002: On the total input of antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements.J. Geophys. Res.,107(C8), doi: 10.1029/ 2001JC00976.

  • Robitaille, D., and A. Weaver, 1995: Validation of subgrid-scale mixing schemes using CFCs in a global ocean model.Geophys. Res. Lett.,22(21), 2917–2920.

    Article  Google Scholar 

  • Sloyan, B., and S. Rintoul, 2000: Estimates of area-averaged diapycnal fluxes from basin-scale budgets.J. Phys. Oceanogr. 30, 2320–2341.

    Article  Google Scholar 

  • Smethie Jr, W. M., R. Fine, A. Putzka, and E. Jones, 2000: Tracing the flow of North Atlantic deep water using chlorofluorocarbons.J. Geophys. Res.,105(C6), 14297–14323.

    Article  Google Scholar 

  • Spencer, R., 1993: Global Oceanic Precipitation from the MSU during 1979–91 and comparisons to other Climatologies.J. Climate,6, 1301–1326.

    Article  Google Scholar 

  • Sun, S., 1997: Compressibility effects in Miami Isopycnic Coordinate Ocean Model. Ph.D. Dissertation, Univ. of Miami, 138pp.

  • Toole, J. M., K. L. Polzin, and R. W. Schmitt, 1994: Estimates of diapycnal mixing in the abyssal ocean.Science,264, 1120–1123.

    Article  Google Scholar 

  • Walker, S., R. Weiss, and P. Salameh, 2000: Reconstructed histories of the annual mean atmospheric mole fractions for halocarbons CFC-11, CFC-12, CFC-113, and carbon tetrachloride.J. Geophys. Res.,105(C6), 14285–14296.

    Article  Google Scholar 

  • Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean.J. Geophys. Res.,97(C5), 7373–7382.

    Article  Google Scholar 

  • Warner, M., and R. Weiss, 1992: Chlorofluoromethanes in South Atlantic Antarctic intermediate water.Deep-Sea Res.,39, 2053–2075.

    Article  Google Scholar 

  • Willey, D. A., R. A. Fine, R. E. Sonnerup, J. L. Bullister, W. M. Smethie Jr., and M. J. Warner, 2004: Global oceanic chlorofluorocarbon inventory.Geophys. Res. Lett.,31, L01303, doi:10.1029/2003GL018816.

    Article  Google Scholar 

  • Woodruff, S., R. Slutz, and R. Jenne, 1987: A comprehensive ocean-atmosphere data set.Bull. Amer. Meteor. Soc.,68, 1239–1250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Drange, H. The effect of diapycnal mixing on the ventilation and CFC-11 uptake in the Southern Ocean. Adv. Atmos. Sci. 21, 755–766 (2004). https://doi.org/10.1007/BF02916372

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916372

Key words

Navigation