Skip to main content
Log in

An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Lag correlations of sea surface temperature anomalies (SSTAs), sea surface height anomalies (SSHAs), subsurface temperature anomalies, and surface zonal wind anomalies (SZWAs) produced by the Flexible Global Ocean-Atmosphere-Land System model: Grid-point Version 2 (FGOALS-g2) are analyzed and compared with observations. The insignificant, albeit positive, lag correlations between the SSTAs in the southeastern tropical Indian Ocean (STIO) in fall and the SSTAs in the central-eastern Pacific cold tongue in the following summer through fall are found to be not in agreement with the observational analysis. The model, however, does reproduce the significant lag correlations between the SSHAs in the STIO in fall and those in the cold tongue at the one-year time lag in the observations. These, along with the significant lag correlations between the SSTAs in the STIO in fall and the subsurface temperature anomalies in the equatorial Pacific vertical section in the following year, suggest that the Indonesian Throughflow plays an important role in propagating the Indian Ocean anomalies into the equatorial Pacific Ocean. Analyses of the interannual anomalies of the Indonesian Throughflow transport suggest that the FGOALS-g2 climate system simulates, but underestimates, the oceanic channel dynamics between the Indian and Pacific Oceans. FGOALS-g2 is shown to produce lag correlations between the SZWAs over the western equatorial Pacific in fall and the cold tongue SSTAs at the one-year time lag that are too strong to be realistic in comparison with observations. The analyses suggest that the atmospheric bridge over the Indo-Pacific Ocean is overestimated in the FGOALS-g2 coupled climate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scot, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231.

    Article  Google Scholar 

  • Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. Zeng, Y. Dai, R. E. Dickinson, and Z. L. Yang, 2002: The landsurface climatology of the community land model coupled to the NCAR community climate model. J. Climate, 15, 3123–3149.

    Article  Google Scholar 

  • Dickinson, R. E., K.W. Oleson, G. Bonan, F. Hoffman, P. Thornton, M. Vertenstein, Z. L. Yang, and X. Zeng, 2006: The community land model and its climate statistics as a component of the community climate system model. J. Climate, 19, 2302–2324.

    Article  Google Scholar 

  • Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The Los Alamos sea ice model documentation and software user’s manual Version 4.0, LA-CC-06-012. [Available online at http://oceans11.lanl.gov/trac/CICE.]

    Google Scholar 

  • Izumo, T., and Coauthors, 2010: Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nature Geoscience, 3, 168–172.

    Article  Google Scholar 

  • Jury, M. R., and B. Huang, 2004: The Rossby wave as a key mechanism of Indian Ocean climate variability. Deep-Sea Res. I, 41, 2123–2136.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Kug, J.-S., and I.-S. Kang, 2006: Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, doi: 10.1029/2005GL024916.

  • Lau, N. C., and M. J. Nath, 2003: Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20.

    Article  Google Scholar 

  • Lau, N. C., A. Leetmaa, M. J. Nath, and H. L. Wang, 2005: Influence of ENSO-induced Indo-western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18, 2922–2942.

    Article  Google Scholar 

  • Li, L., and Coauthors, 2010: Development and evaluation of GAMIL2.0 and FGOALS2.0-g. The 5th C20C Workshop, Beijing, IAP, 1–24.

    Google Scholar 

  • Li, L. J., and Coauthors, 2013: The flexible global ocean-atmosphere-land system model, grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30(3), 543–560, doi: 10.100/s00376-012-2140-6.

    Article  Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) Version 2. Acta Meteorologica Sinica, doi: 10.1007/s13351-012-0305-y.

    Google Scholar 

  • Luo, J.-J., R. C. Zhang, S. K. Behera, Y. Masumoto, F. F. Jin, R. Lukas, and T. Yamagata, 2010: Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23, doi: 10.1175/2009JCLI3104.1.

  • MacDonald, A. M., 1998: The global ocean circulation: A hydrographic estimate and regional analysis. Progress in Oceanography, 41, 281–382.

    Article  Google Scholar 

  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27589–27602.

    Article  Google Scholar 

  • Meehl, G. A., and S. Bony, 2011: Introduction to CMIP5. Clivar Exchanges No. 56, 16(2), 4–5.

    Google Scholar 

  • Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. [Available online at http://cmippcmdi.llnl.gov/cmip5/experimen_t_design.htm.l.]

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, doi: 10.1175/BAMS-D-11-00094.1.

  • White, W. B., 1995: Design of a global observing system for gyrescale upper ocean temperature variability. Progress in Oceanography, 36, 169–217.

    Article  Google Scholar 

  • Wijffels, S. E., G. Meyers, and J. S. Godfrey, 2008: A twenty year average of the Indonesian throughflow: Regional currents and the interbasin exchange. J. Phys. Oceanogr., 38, 1965–1978.

    Article  Google Scholar 

  • Yuan, D. L., and H. Liu, 2009: Long-wave dynamics of sea level variations during Indian Ocean dipole events. J. Phys. Oceanogr., 39, 1115–1132, doi: 10.1175/2008JPO3900.1.

    Article  Google Scholar 

  • Yuan, D. L., and Coauthors, 2011: Forcing of the Indian Ocean dipole on the interannual variations of the tropical Pacific Ocean: Roles of the Indonesian throughflow. J. Climate, 15, 3597–3608.

    Google Scholar 

  • Yuan, D. L., H. Zhou, and X. Zhao, 2012: Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean dipole through the Indonesian Throughflow. J. Climate, doi: 10.1175/JCLI-D-12-00117.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Yuan  (袁东亮).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Yuan, D., Yu, Y. et al. An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model. Adv. Atmos. Sci. 30, 997–1016 (2013). https://doi.org/10.1007/s00376-013-2131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2131-2

Key words

Navigation