Skip to main content
Log in

Simulation by CMIP5 models of the atlantic multidecadal oscillation and its climate impacts

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study focuses on the climatic impacts of the Atlantic Multidecadal Oscillation (AMO) as a mode of internal variability. Given the difficulties involved in excluding the effects of external forcing from internal variation, i.e., owing to the short record length of instrumental observations and historical simulations, we assess and compare the AMO and its related climatic impacts both in observations and in the “Pre-industrial” experiments of models participating in CMIP5. First, we evaluate the skill of the 25 CMIP5 models’ “Historical” simulations in simulating the observational AMO, and find there is generally a considerable range of skill among them in this regard. Six of the models with higher skill relative to the other models are selected to investigate the AMO-related climate impacts, and it is found that their “Pre-industrial” simulations capture the essential features of the AMO. A positive AMO favors warmer surface temperature around the North Atlantic, and the Atlantic ITCZ shifts northward leading to more rainfall in the Sahel and less rainfall in Brazil. Furthermore, the results confirm the existence of a teleconnection between the AMO and East Asian surface temperature, as well as the late withdrawal of the Indian summer monsoon, during positive AMO phases. These connections could be mainly caused by internal climate variability. Opposite patterns are true for the negative phase of the AMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. J., 2015: A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. J. Geophys. Res. Atmos., 120, 9087–9102, doi: 10.1002/2015JD023623.

    Article  Google Scholar 

  • Ba, J., and Coauthors, 2014: A multi-model comparison of Atlantic multidecadal variability. Climate Dyn., 43, 2333–2348, doi: 10.1007/s00382-014-2056-1.

    Article  Google Scholar 

  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, 10, 1–82.

    Article  Google Scholar 

  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228–232.

    Article  Google Scholar 

  • Chen, W., R. Y. Lu, and B.W. Dong, 2014: Intensified anticyclonic anomaly over the western North Pacific during El ñiñecaying summer under a weakened Atlantic thermohaline circulation. J. Geophys. Res. Atmos., 119, 13637–13650, doi: 10.1002/2014JD022199.

    Article  Google Scholar 

  • Cheng, W., J. C. H. Chiang, and D. X. Zhang, 2013: Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Climate, 26, 7187–7197.

    Article  Google Scholar 

  • Chiang, J.-C.-H., C.-Y. Chang, and M.-F. Wehner, 2013: Longterm behavior of the Atlantic interhemispheric SST gradient in the CMIP5 historical simulations. J. Climate, 26, 8628–8640.

    Article  Google Scholar 

  • Chylek, P., C. K. Folland, G. Lesins, and M. K. Dubey, 2010: Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 37, L08703, doi: 10.1029/2010GL042793.

  • Chylek, P., C. K. Folland, H. A. Dijkstra, G. Lesins, and M. K. Dubey, 2011: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 38, L13704, doi: 10.1029/2011GL047501.

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    Article  Google Scholar 

  • Ding, Q. H., J. M. Wallace, D. S. Battisti, E. J. Steig, A. J. E. Gallant, H.J. Kim, and L. Geng, 2014: Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature, 509(7499), 209–212.

    Article  Google Scholar 

  • Dong, B. W., R. T. Sutton, and A. A. Scaife, 2006: Multidecadal modulation of El Niño-southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett., 33, L08705, doi: 10.1029/2006GL025766.

  • Drinkwater, K. F., M. Miles, I. Medhaug, O. H. Otterå, T. Kristiansen, S. Sundbya, and Y. Q. Gao, 2014: The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. Journal of Marine Systems, 133, 117–130.

    Article  Google Scholar 

  • Dunstone, N. J., D. M. Smith, B. B. B. Booth, L. Hermanson, and R. Eade, 2013: Anthropogenic aerosol forcing of Atlantic tropical storms. Nature Geoscience, 6(7), 534–539.

    Article  Google Scholar 

  • Enfield, D. B., A. M. Mestas-Nuñez and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28(10), 2077–2080.

    Article  Google Scholar 

  • Feng, S., and Q. Hu, 2008: How the North Atlantic Multidecadal Oscillation may have influenced the Indian summer monsoon during the past two millennia. Geophys. Res. Lett., 35, L01707, doi: 10.1029/2007GL032484.

  • Frankignoul, C., and N. Senn´echael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592–606, doi: 10.1175/JCLI4021.1.

    Article  Google Scholar 

  • Gao, Y. Q., and Coauthors, 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32(1), 92–114, doi: 10.1007/s00376-014-0009-6.

    Article  Google Scholar 

  • Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, doi: 10.1029/2005GL024803.

  • Gray, S. T., L. J. Graumlich, J. L. Betancourt, and G. T. Pederson, 2004: A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys. Res. Lett., 31, L12205, doi: 10.1029/2004GL019932.

  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499(7459), 464–467.

    Article  Google Scholar 

  • Hansen, J., M. Sato, R. Ruedy, K. Lo, D. Lea, and M. Medina-Elizade, 2006: Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103, 14 288–14 293, doi: 10.1073/pnas.0606291103.

    Article  Google Scholar 

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, doi: 10.1029/2008GL037079.

  • Hurrell, J. W., and Coauthors, 2009: Decadal climate prediction: Opportunities and challenges. Proc. OceanObs’09: Sustained Ocean Observations and Information for Society, ESA Publication, Venice, 521–533.

    Google Scholar 

  • Kavvada, A., A. Ruiz-Barradas, and S. Nigam, 2013: AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Climate Dyn., 41(5–6), 1345–1364.

    Article  Google Scholar 

  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453: 84–88.

    Article  Google Scholar 

  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett., 33, L17706, doi: 10.1029/2006GL026242.

  • Li, F., H. J.Wang, and Y. Q. Gao, 2015: Extratropical ocean warming and winter Arctic sea ice cover since the 1990s. J. Climate, 28, 5510–5522, doi: 10.1175/JCLI-D-14-00629.1.

    Article  Google Scholar 

  • Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24(1), 126–135, doi: 10.1007/s00376-007-0126-6.

    Article  Google Scholar 

  • Li, S. L., J. Perlwitz, X.W. Quan, and M. P. Hoerling, 2008: Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys. Res. Lett., 35, L05804, doi: 10.1029/2007GL032901.

  • Lu, R. Y., B. W. Dong, and H. Ding, 2006: Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, doi: 10.1029/2006GL027655.

  • Luo, F. F., and S. L. Li, 2014: Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature. Science China Earth Sciences, 57, 3062–3072, doi: 10.1007/s11430-014-4984-3.

    Article  Google Scholar 

  • Luo, F. F., S. L. Li, and T. Furevik, 2011: The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in Bergen Climate Model Version 2.0. J. Geophys. Res., 116, D19117, doi: 10.1029/2011JD015848.

  • Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857–876.

    Google Scholar 

  • Martin, E. R., C. Thorncroft, and B. B. B. Booth, 2014: The Multidecadal Atlantic SST–Sahel rainfall teleconnection in CMIP5 simulations. J. Climate, 27, 784–806.

    Article  Google Scholar 

  • Medhaug, I., and T. Furevik, 2011: North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface temperature and ocean overturning circulation. Ocean Science Discussions, 8, 353–396.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467–1485.

    Article  Google Scholar 

  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25, 693–712, doi: 10.1002/joc.1181.

    Article  Google Scholar 

  • Msadek, R., C. Frankignoul, and L. Z. X. Li, 2011: Mechanisms of the atmospheric response to North Atlantic multidecadal variability: A model study. Climate Dyn., 36, 1255–1276, doi: 10.1007/s00382-010-0958-0.

    Article  Google Scholar 

  • Otterå, O. H., M. Bentsen, H. Drange, and L. L. Suo, 2010: External forcing as a metronome for Atlantic multidecadal variability. Nature Geoscience, 3, 688–694.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347(6225), 988–991.

    Article  Google Scholar 

  • Suo, L. L., O. H. Otterå M. Bentsen, Y. Q. Gao, and O. M. Johannessen, 2013: External forcing of the early 20th century arctic warming. Tellus A, 65, 20578.

    Article  Google Scholar 

  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115–118.

    Article  Google Scholar 

  • Sutton, R. T., and D. L. R. Hodson, 2007: Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J. Climate, 20, 891–907.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res, 106, 7183–7192.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Ting, M. F., Y. Kushnir, R. Seager, and C. H.Li, 2009: Forced and internal twentieth-century SST trends in the North Atlantic. J. Climate, 22, 1469–1481.

    Article  Google Scholar 

  • Ting, M. F., Y. Kushnir, R. Seager, and C. H. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, doi: 10.1029/2011GL048712.

  • Wang, Y. M., S. L. Li, and D. H. Luo, 2009: Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res., 114, D02112, doi: 10.1029/2008JD010929.

  • Wilcox, L. J., E. J. Highwood, and N. J. Dunstone, 2013: The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environmental Research Letters, 8(2), 024033.

    Google Scholar 

  • Wu, B. Y., R. H. Zhang, R. D’Arrigo, and J. Z. Su, 2013: On the Relationship between winter sea ice and summer atmospheric circulation over Eurasia. J. Climate, 26, 5523–5536.

    Article  Google Scholar 

  • Yu, L., Y. Q. Gao, H. J. Wang, D. Guo, and S. L. Li, 2009: The responses of East Asian Summer monsoon to the North Atlantic Meridional Overturning Circulation in an enhanced fresh-water input simulation. Chinese Science Bulletin, 54, 4724–4732, doi: 10.1007/s11434-009-0720-3.

    Google Scholar 

  • Zhang, L. P., and C. Z. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 5772–5791, doi: 10.1002/jgrc. 20390.

    Article  Google Scholar 

  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860.

    Article  Google Scholar 

  • Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, doi: 10.1029/2006GL026267.

  • Zhou, X. M., S. L. Li, F. F. Luo, Y. Q. Gao, and T. Furevik, 2015: Air-sea coupling enhances the East Asian winter climate response to the Atlantic Multidecadal Oscillation. Adv. Atmos. Sci., 32(12), 1647–1659, doi: 10.1007/s00376-015-5030-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Luo, F., Li, S. et al. Simulation by CMIP5 models of the atlantic multidecadal oscillation and its climate impacts. Adv. Atmos. Sci. 33, 1329–1342 (2016). https://doi.org/10.1007/s00376-016-5270-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5270-4

Keywords

Navigation