Skip to main content
Log in

A formulation to model the nonlinear viscoelastic properties of the vascular tissue

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nearly all soft tissues, including the vascular tissue, present a certain degree of viscoelastic material response, which becomes apparent performing multiple relaxation tests over a wide range of strain levels and plotting the resulting stress relaxation curves, nonlinear viscoelasticity of the tissue. Changes in relaxation rate at each strain may occur at multiple strain levels. A constitutive formulation considering the particular features of the vascular tissue, such as anisotropy, together with these nonlinear viscoelastic phenomena is here presented and used to fit stress–stretch curves from experimental relaxation tests. This constitutive model was used to fit several data set of in vitro experimental stress relaxation tests performed on ovine and porcine aorta. The good fitting of the experimental data shows the capability of the model to reproduce the viscoelastic response of the vascular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alastrué V. et al.: Numerical framework for patient-specific computational modelling of vascular tissue. Commun. Numer. Meth. Engng. 26, 35–51 (2010)

    MATH  Google Scholar 

  2. Alastrué V. et al.: Experimental study and constitutive modelling of the passive mechanical properties of the ovine infrarenal vena cava tissue. J. Biomech. 41, 3038–3045 (2008)

    Article  Google Scholar 

  3. Antonov P. et al.: Age dependent changes of arterial wall viscoelasticity. Clin. Hemorheol. Microcirc. 39, 63–68 (2008)

    Google Scholar 

  4. Armentano R.L. et al.: An in vitro study of cryopreserved and fresh human arteries: A comparison with ePTFE prostheses and human arteries studied non-invasively in vivo. Cryobiology 52, 17–26 (2006)

    Article  Google Scholar 

  5. Armentano R.L. et al.: Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26, 48–54 (1995)

    Google Scholar 

  6. Barra J. et al.: Symptoms and outcome measures of pelvic organ prolapse. Clin. Obstet. Gynecol. 738, 1040–1050 (1993)

    Google Scholar 

  7. Bonifasi-Lista C. et al.: Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J. Orthopaed. Res. 23, 67–76 (2005)

    Article  Google Scholar 

  8. Drapaca C.S. et al.: Nonlinear constitutive laws in viscoelasticity. Math. Mech. Solids 12, 475–501 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duernwald S. et al.: Constitutive equations for ligament and other soft tissue: Evaluation by experiment. Acta Mech. 205, 23–33 (2009)

    Article  Google Scholar 

  10. Duernwald S. et al.: Viscoelastic relaxation and recovery of tendon. Ann. Biomed. Eng. 37, 1131–1140 (2009)

    Article  Google Scholar 

  11. Fung Y.C.: Biomechanics. Mechanical Propeties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  12. Gow B.S., Taylor M.G.: Measurement of viscoelastic properties of arteries in the living dog. Circ. Res. 23, 111–122 (1968)

    Google Scholar 

  13. Haslach H.W.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model Mechanobiol. 3, 172–189 (2005)

    Article  Google Scholar 

  14. Hingorani R.V. et al.: Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32, 306–312 (2004)

    Article  Google Scholar 

  15. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000)

    MATH  Google Scholar 

  16. Holzapfel G.A. et al.: Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening, and related constitutive modelling. Am. J. Physiol. Heart Circ. Physiol. 289, H2048–H2058 (2005)

    Article  Google Scholar 

  17. Holzapfel G.A., Gasser T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng. 190, 4379–4403 (2001)

    Article  Google Scholar 

  18. Holzapfel G.A. et al.: A structural model for the viscoelastic behaviour of arterial walls: Continuum formultaion and finite element analysis. Eur. J. Mech. A/Solids 21, 441–463 (2002)

    Article  MATH  Google Scholar 

  19. Humphrey, J.D.: Continuum biomechanics of soft biological tissues. In: Proceedings of the Royal Society of London. Series A, vol. 175, pp. 1–44 (2002)

  20. Johnson G.A. et al.: A single integral finite strain viscoelastic model of ligaments and tendons. ASME J. Biomech. Eng. 118, 221–226 (1996)

    Article  Google Scholar 

  21. Lu X. et al.: Shear modulus of porcine coronary artery: Contributions of media and adventitia. Am. J. Physiol. Heart Circ. Physiol. 285, H1966–H1975 (2003)

    Google Scholar 

  22. Merodio J., Goicolea J.M.: On thermodynamically consistent constitutive equations for fiber-reinforced nonlinearly viscoelastic solids with apllication to biomechanics. Mech. Res. Commun. 34, 561–571 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Merodio J., Rajagopal K.R.: On constitutive equations for anisotropic nonlinearly viscoelastic solids. Math. Mech. Solids 12, 131–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Natali A.N. et al.: Viscoelastic response of the periodontal ligament: An experimental-numerical analysis. Connect. Tissue R 45, 222–230 (2004)

    Article  Google Scholar 

  25. Nedjar B.: An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 196, 1745–1756 (2007)

    Article  MATH  Google Scholar 

  26. Nguyen T.D. et al.: Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int. J. Solids Struct. 44, 8366–8389 (2007)

    Article  MATH  Google Scholar 

  27. Peña, E., et al.: A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour. J. Biomech. (2009, In press)

  28. Peña E. et al.: An anisotropic visco-hyperelastic model for ligaments at finite strains: Formulation and computational aspects. Int. J. Solids Struct. 44, 760–778 (2007)

    Article  MATH  Google Scholar 

  29. Peña E. et al.: Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch Comput. Method Eng. 14(1), 47–91 (2007)

    Article  MATH  Google Scholar 

  30. Peña E. et al.: On modelling nonlinear viscoelastic effects in ligaments. J. Biomech. 41, 2659–2666 (2008)

    Article  Google Scholar 

  31. Pioletti D.P., Rakotomanana L.: Non-linear viscoelastic laws for soft biological tissues. Eur. J. Mech. A/Solids 19, 749–759 (2000)

    Article  MATH  Google Scholar 

  32. Provenzano P.P. et al.: Application of nonlinear viscoelastic models to describe ligament behavior. Biomech. Model Mechanobiol. 1, 45–47 (2002)

    Article  Google Scholar 

  33. Schapery R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  34. Silver F.H. et al.: Mechanical behavior of vessel wall: A comparative study of aorta, vena cava, and carotid artery. Ann. Biomed. Eng. 31, 793–803 (2003)

    Article  Google Scholar 

  35. Simo J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  37. Simo J.C., Taylor R.L.: Quasi-incompresible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng. 85, 273–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Spencer, A.J.M.: Theory of invariants. In: Continuum Physics, pp. 239–253. Academic Press, New York (1954)

  39. Vena P. et al.: A constituent-based model for the nonlinear viscoelastic behavior of ligaments. ASME J. Biomech. Eng. 128, 449–457 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, J.A., Martínez, M.A. & Peña, E. A formulation to model the nonlinear viscoelastic properties of the vascular tissue. Acta Mech 217, 63–74 (2011). https://doi.org/10.1007/s00707-010-0378-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0378-6

Keywords

Navigation