Skip to main content
Log in

Evaluation of the expanded measurement uncertainty in the determination of the net flux of nutrients and carbon atoms through the liver in ruminants

  • Practitioner's Report
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

In in vivo metabolic studies, quantifying the flux of a nutrient and/or the carbon atoms through the liver implies the analytical determination of nutrient concentrations before and after crossing the liver and of blood or plasma flux. There is a measurement uncertainty (MU) associated with each input quantity, which may compromise accurate physiological interpretations of the results. The objective of this work was to calculate the expanded MU of net fluxes of nutrients and carbon atoms through the liver of ruminants and to identify the main components that affect MUs. To this end, all quantities (i.e., nutrient concentrations, para-aminohippuric acid concentrations, hematocrit, time of infusion, and others) that influenced the final results were identified and quantified. Their associated MUs were calculated with Type A or Type B approaches. An expanded MU model was developed by combining these two approaches. In general, the relative expanded MU of the net flux of nutrients calculated in plasma was lower than that in blood. For both plasma and blood fluxes, the main components that increased MUs were identified. The net hepatic flux of carbon atoms, for example, was estimated to be (63 ± 229) mmol min−1. This high expanded MU was mainly a result of acetate concentration measurements in hepatic and portal veins. Priority strategies to reduce MUs, such as selecting an adequate matrix or using more accurate measurement methods, were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Katz ML, Bergman EN (1969) Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. Am J Physiol 216:946–952

    CAS  Google Scholar 

  2. Isserty A, Ortigues I, Remond D (1998) Mesure des débits splanchniques par dilution de marqueur: comparaison de quatre méthodes de dosage de l’acide para-amino-hippurique. Reprod Nutr Dev 38:93–106

    Article  CAS  Google Scholar 

  3. Rodríguez-López JM, Cantalapiedra-Hijar G, Durand D, Isserty-Thomas A, Ortigues-Marty I (2014) Influence of the para-aminohippuric acid analysis method on the net hepatic flux of nutrients in lactating cows. J Anim Sci 92:1074–1082

    Article  Google Scholar 

  4. Loncke C (2009) Modélisation des relations entre l’alimentation et les flux splanchniques de nutriments énergétiques chez le ruminant. Thèse de Docteur de l’Institut des Sciences et Industries du Vivant et de l’Environnement (Agro Paris Tech)

  5. Bergman RN, Azen SP (1974) Measurement error inherent in the determination of hepatic glucose balance. J Appl Physiol 36:269–273

    CAS  Google Scholar 

  6. Hanigan MD, Crompton LA, Reynolds CK, Wray-Cahen D, Lomax MA, France J (2004) An integrative model of amino acid metabolism in the liver of the lactating dairy cow. J Theor Biol 228:271–289

    Article  CAS  Google Scholar 

  7. VIM (2012) International Vocabulary of metrology—basic and general concepts and associated terms; also JCGM 200:2012. http://www.bipm.org. Accessed 2 Feb 2015

  8. GUM (2008) Guide to the expression of uncertainty in measurement (GUM). International Organization for Standardization, Geneva; also JCGM 100:2008. http://www.bipm.org. Accessed 2 Feb 2015

  9. Certificate of Authorisation to Experiment on Living Animals, No. 004495, Ministry of Agriculture, France

  10. Ortigues I, Durand D, Lefaivre J (1994) Use of para-amino hippuric acid to measure blood flows through portal-drained-viscera, liver and hindquarters in sheep. J Agric Sci 122:299–308

    Article  CAS  Google Scholar 

  11. Majdoub L, Vermorel M, Ortigues-Marty I (2003) Ryegrass-based diet and barley supplementation: partition of energy-yielding nutrients among splanchnic tissues and hind limbs in finishing lambs. J Anim Sci 81:1068–1079

    CAS  Google Scholar 

  12. Savary-Auzeloux I, Kraft G, Bequette BJ, Papet I, Rémond D, Ortigues-Marty I (2010) Dietary nitrogen-to-energy ratio alters amino acid partition in the whole body and among the splanchnic tissues of growing rams. J Anim Sci 88:2122–2131

    Article  CAS  Google Scholar 

  13. Bergmeyer HU (1985) Ammonia determination. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods of enzymatic analysis. Academic Press, London, p 454

    Google Scholar 

  14. Reynolds PJ, Huntington GB, Reynolds CK (1986) Determination of volatile fatty acids, lactate and B-hydroxybutyrate in blood by ion exchange cleanup and gas chromatography. J Anim Sci 63:424

    Google Scholar 

  15. Cantalapiedra-Hijar G, Lemosquet S, Rodríguez-López JM, Messad F, Ortigues-Marty I (2014) Diets rich in starch increase the post-hepatic availability of absorbed amino acids in dairy cows fed diets at low and normal protein levels. J Dairy Sci 97:5151–5166

    Article  CAS  Google Scholar 

  16. EURACHEM/CITAC (2012) Guide: quantifying uncertainty in analytical measurement, 3rd ed. In: Ellison SLR and Williams A (eds) www.eurachem.org. Accessed 2 Feb 2015

  17. Zierler KL (1961) Theory of the use of arteriovenous concentration differences for measuring metabolism in steady and non-steady state. J Clin Investig 40:2111–2125

    Article  CAS  Google Scholar 

  18. Kragten J (1994) Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 119:2161–2165

    Article  CAS  Google Scholar 

  19. Feinberg M, Montamat M, Rivier C, Lalère B, Labarraque G (2002) Comparison of strategies to quantify uncertainty of lead measurements in biological tissue at mg kg−1 level. Accred Qual Assur 7:403–408

    Article  CAS  Google Scholar 

  20. Thompson M (2011) Uncertainty functions, a compact way of summarizing or specifying the behavior of analytical systems. Trends Anal Chem 30:1168–1175

    Article  CAS  Google Scholar 

  21. Satake K, Okuyama T, Ohashi M, Shinoda T (1960) The spectrophotometric determination of amino acid and peptide with 2,4,6-trinitrobenzene 1-sulfonic acid. J Biochem 47:654–660

    CAS  Google Scholar 

  22. Chacornac JP, Bardouin J, Houlier ML (1993) Micro-dosage automatisé sur analyseur à transfert de l’azote alpha aminé circulant. Reprod Nutr Dev 33:99–108

    Article  CAS  Google Scholar 

  23. Martineau R, Ortigues-Marty I, Vernet J, Lapierre H (2009) Technical note: correction of net portal absorption of nitrogen compounds for differences in methods: first step of a meta-analysis. J Anim Sci 87:3300–3303

    Article  CAS  Google Scholar 

  24. Kraft G, Ortigues-Marty I, Durand D, Remond D, Jarde T, Bequette B, Savary-Auzeloux I (2011) Adaptations of hepatic amino acid uptake and net utilization contributes to nitrogen economy or waste in lambs fed nitrogen- or energy-deficient diets. Animal 5:678–690

    Article  CAS  Google Scholar 

  25. Seal CJ, Reynolds CK (1993) Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutr Res 6:185–208

    Article  CAS  Google Scholar 

  26. Loncke C, Nozière P, Bahloul L, Vernet J, Lapierre H, Sauvant D, Ortigues-Marty I (2014) Empirical prediction of net splanchnic release of ketogenic nutrients, acetate, butyrate and β-hydroxybutyrate in ruminants: a meta-analysis. Animal 9:449–463

    Article  Google Scholar 

  27. Stangassinger M, Giesecke D (1986) Splanchnic metabolism of glucose and related energy substrates. In: Milligan LP, Grovum WL, Dobson A (eds) Control of digestion and metabolism in ruminants, vol 18. Prentice Hall, Englewoodcliffs, pp 347–366

    Google Scholar 

  28. Ewaschuk JB, Naylor JM, Zello GA (2005) D-lactate in human and ruminant metabolism. J Nutr 135:1619–1625

    CAS  Google Scholar 

  29. Isserty A, Ortigues I (1994) Méthodes d’exploitation de données concernant les débits sanguins mesurés au niveau des viscères et du train-arrière chez la brebis. Reprod Nutr Dev 34:399–413

    Article  CAS  Google Scholar 

  30. Kristensen NB, Røjen BA, Raun BML, Storm AC, Puggaard L, Larsen M (2009) Hepatic acetylation of the blood flow marker p-aminohippuric acid affect measurement of hepatic blood flow in cattle. In: Chilliard Y, Glasser F, Faulconnier Y, Bocquier F, Veissier I, Doreau M (eds) Ruminant physiology: digestion, metabolism, and effects of nutrition on reproduction and welfare. Wageningen Academic Publishers, The Netherlands, pp 558–559

    Google Scholar 

  31. Nozière P, Remond D, Ferlay A, Doreau M (1998) Differences between blood and plasma concentrations of acetate, β-hydroxybutyrate, glucose, ammonia and urea: implications for measurement of portal net fluxes in ewes. Reprod Nutr Dev 38:509–518

    Article  Google Scholar 

  32. Guinard J, Rulquin H (1994) Effect of graded levels of duodenal infusions of casein on mammary uptake in lactating cows. 2. Individual amino acids. J Dairy Sci 77:3304–3315

    Article  CAS  Google Scholar 

  33. Kristensen NB, Harmon DL (2004) Splanchnic metabolism of volatile fatty acids absorbed from the washed reticulorumen of steers. J Anim Sci 82:2033–2042

    CAS  Google Scholar 

  34. Steinhoff-Wagner J, Görs S, Junghans P, Bruckmaier RM, Kanitz E, Metges CC, Hammon HM (2011) Intestinal glucose absorption but not endogenous glucose production differs between colostrum-and formula-fed neonatal calves. J Nutr 141:48–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UERT Les Cèdres for the management of the animals, A.S. Bage, F. Messad, and A. Illovies for their decisive contributions to laboratory analyses, as well as Adisseo France SAS, and the REDNEX EU FP7 Project for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Ortigues-Marty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Glossary

HA

Hepatic artery

HV

Hepatic vein

MA

Mesenteric artery

MV

Mesenteric vein

PV

Portal vein

RV

Ruminal vein

AAN

Amino acid nitrogen

BOH

β-hydroxybutyrate

NEFA

Non-esterified fatty acids

pAH

Para-aminohippuric acid

VFA

Volatile fatty acids

β

Net carbon atoms flux through the liver (mmol L−1), calculated as F β + G β

C i (i = inf, PV, HV or MA)

Para-aminohippuric acid concentration in infused solution (g L−1) or in PV, HV or MA (mg L−1)

f i (i = PV or HV)

Plasma flux in PV or HV (L min−1)

F (j)

Plasma hepatic flux of a nutrient j (mmol min−1)

F β

Plasma hepatic flux of carbon atoms (mmol min−1)

g i (i = PV or HV)

Blood flux in PV or HV (L min−1)

G (j’)

Blood hepatic flux of a nutrient j’ (mmol min−1)

G β

Blood hepatic flux of carbon atoms (mmol min−1)

H

Hematocrit

N i (i = PV, HV or MA)

Nutrient concentration in PV, HV or MA (mmol L−1)

Q i (i = PV, HV or MA)

Carbon atoms plasma concentrations (present as AAN, NEFA and triglycerides) in PV, HV or MA (mmol L−1)

R i (i = PV, HV or MA)

Carbon atoms blood concentrations (present as acetate, butyrate, BOH, CO2, glucose, lactate and propionate) in PV, HV or MA (mmol L−1)

s(X)

Standard deviation of an input X, estimated for the Type A approach

SEM

Standard error of the mean

T inf

Time of para-aminohippuric acid infusion (min)

u(X)

standard uncertainty of an input X, estimated for the Type B approach

u c (Y)

Combined standard uncertainty of a quantity Y

U(Y)

Expanded uncertainty of a quantity Y

U rel

Relative expanded uncertainty of a measurement result (%)

W inf

Total weight of infused volume in each syringe (expressed in mL, where the density of the solution is 1 g mL−1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-López, J.M., Feinberg, M., Durand, D. et al. Evaluation of the expanded measurement uncertainty in the determination of the net flux of nutrients and carbon atoms through the liver in ruminants. Accred Qual Assur 21, 131–142 (2016). https://doi.org/10.1007/s00769-015-1187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-015-1187-3

Keywords

Navigation