Advancing Open Science
for more than 25 years
Supporting academic communities
since 1996
 
18 pages, 10712 KiB  
Article
Improved YOLOv8 Model for Lightweight Pigeon Egg Detection
by Tao Jiang, Jie Zhou, Binbin Xie, Longshen Liu, Chengyue Ji, Yao Liu, Binghan Liu and Bo Zhang
Animals 2024, 14(8), 1226; https://doi.org/10.3390/ani14081226 (registering DOI) - 19 Apr 2024
Abstract
In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module [...] Read more.
In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module of the YOLOv8n backbone network and neck network are replaced with Fasternet-EMA Block and Fasternet Block, respectively. The Fasternet Block is designed based on PConv (Partial Convolution) to reduce model parameter count and computational load efficiently. Furthermore, the incorporation of the EMA (Efficient Multi-scale Attention) mechanism helps mitigate interference from complex environments on pigeon-egg feature-extraction capabilities. Additionally, Dysample, an ultra-lightweight and effective upsampler, is introduced into the neck network to further enhance performance with lower computational overhead. Finally, the EXPMA (exponential moving average) concept is employed to optimize the SlideLoss and propose the EMASlideLoss classification loss function, addressing the issue of imbalanced data samples and enhancing the model’s robustness. The experimental results showed that the F1-score, mAP50-95, and mAP75 of YOLOv8-PG increased by 0.76%, 1.56%, and 4.45%, respectively, compared with the baseline YOLOv8n model. Moreover, the model’s parameter count and computational load are reduced by 24.69% and 22.89%, respectively. Compared to detection models such as Faster R-CNN, YOLOv5s, YOLOv7, and YOLOv8s, YOLOv8-PG exhibits superior performance. Additionally, the reduction in parameter count and computational load contributes to lowering the model deployment costs and facilitates its implementation on mobile robotic platforms. Full article
Show Figures

Figure 1

28 pages, 706 KiB  
Article
Digital Transformation in Omani Higher Education: Assessing Student Adoption of Video Communication during the COVID-19 Pandemic
by Fatima Amer jid Almahri, Islam Elbayoumi Salem, Ahmed Mohamed Elbaz, Hassan Aideed and Zameer Gulzar
Informatics 2024, 11(2), 21; https://doi.org/10.3390/informatics11020021 (registering DOI) - 19 Apr 2024
Abstract
The COVID-19 pandemic has influenced many fields, such as communication, commerce, and education, and pushed business entities to adopt innovative technologies to continue their business operations. Students need to do the same, so it is essential to understand their acceptance of these technologies [...] Read more.
The COVID-19 pandemic has influenced many fields, such as communication, commerce, and education, and pushed business entities to adopt innovative technologies to continue their business operations. Students need to do the same, so it is essential to understand their acceptance of these technologies to make them more usable for students. This paper employs the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) to identify the factors that influenced students’ acceptance and use of different online communication services as the primary tool for learning during the COVID-19 pandemic. Six factors of UTAUT2 were used to measure the acceptance and use of video communication services at the Business College of the University of Technology and Applied Sciences. Two hundred students completed our online survey. The results demonstrated that social influence, facilitating conditions, hedonic motivation, and habit affect behavioral intention positively, while performance expectancy and effort expectancy have no effect on behavioral intention. Full article
(This article belongs to the Section Human-Computer Interaction)
Show Figures

Figure 1

14 pages, 3020 KiB  
Review
Advances in Biosensors for the Rapid Detection of Marine Biotoxins: Current Status and Future Perspectives
by Xiangwei Zhu, Yufa Zhao, Long Wu, Xin Gao, Huang Huang, Yu Han and Ting Zhu
Biosensors 2024, 14(4), 203; https://doi.org/10.3390/bios14040203 (registering DOI) - 19 Apr 2024
Abstract
Marine biotoxins (MBs), harmful metabolites of marine organisms, pose a significant threat to marine ecosystems and human health due to their diverse composition and widespread occurrence. Consequently, rapid and efficient detection technology is crucial for maintaining marine ecosystem and human health. In recent [...] Read more.
Marine biotoxins (MBs), harmful metabolites of marine organisms, pose a significant threat to marine ecosystems and human health due to their diverse composition and widespread occurrence. Consequently, rapid and efficient detection technology is crucial for maintaining marine ecosystem and human health. In recent years, rapid detection technology has garnered considerable attention for its pivotal role in identifying MBs, with advancements in sensitivity, specificity, and accuracy. These technologies offer attributes such as speed, high throughput, and automation, thereby meeting detection requirements across various scenarios. This review provides an overview of the classification and risks associated with MBs. It briefly outlines the current research status of marine biotoxin biosensors and introduces the fundamental principles, advantages, and limitations of optical, electrochemical, and piezoelectric biosensors. Additionally, the review explores the current applications in the detection of MBs and presents forward-looking perspectives on their development, which aims to be a comprehensive resource for the design and implementation of tailored biosensors for effective MB detection. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Figure 1

16 pages, 4018 KiB  
Article
Numerical Investigation for Power Generation by Microbial Fuel Cells Treating Municipal Wastewater in Guelph, Canada
by Yiming Li and Shunde Yin
Clean Technol. 2024, 6(2), 497-512; https://doi.org/10.3390/cleantechnol6020026 (registering DOI) - 19 Apr 2024
Abstract
Significant research endeavors have focused on microbial fuel cell (MFC) systems within wastewater treatment protocols owing to their unique capacity to convert chemical energy from waste into electricity while maintaining minimal nutrient concentrations in the effluent. While prior studies predominantly relied on empirical [...] Read more.
Significant research endeavors have focused on microbial fuel cell (MFC) systems within wastewater treatment protocols owing to their unique capacity to convert chemical energy from waste into electricity while maintaining minimal nutrient concentrations in the effluent. While prior studies predominantly relied on empirical investigations, there remains a need to explore modeling and simulation approaches. Assessing MFC systems’ performance and power generation based on real wastewater data is pivotal for their practical implementation. To address this, a MATLAB model is developed to elucidate how MFC parameters and constraints influence system performance and enhance wastewater treatment efficiency. Leveraging actual wastewater data from a municipal plant in Guelph, Canada, six sets of MFC models are employed to examine the relationship between power generation and six distinct parameters (inflow velocity, membrane thickness, internal resistance, anode surface area, feed concentration, and hydraulic retention time). Based on these analyses, the final model projects a total power generation of 50,515.16 kW for the entire wastewater treatment plant in a day, capable of supporting approximately 2530 one-person households. Furthermore, the model demonstrates a notably higher chemical oxygen demand (COD) removal rate (75%) compared to the Guelph WWTP. This comprehensive model serves as a valuable tool for future simulations in similar wastewater treatment plants, providing insights for optimizing performance and aiding in practical applications. Full article
Show Figures

Figure 1

17 pages, 6530 KiB  
Article
A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan
by Hsin-Fu Yeh, Xin-Yu Lin, Chia-Chi Huang and Hsin-Yu Chen
Geosciences 2024, 14(4), 106; https://doi.org/10.3390/geosciences14040106 (registering DOI) - 19 Apr 2024
Abstract
Understanding drought evolution and its driving factors is crucial for effective water resource management and forecasting. This study enhances the analysis of drought probability by constructing bivariate distributions, providing a more realistic perspective than single-characteristic approaches. Additionally, a meteorological drought migration model is [...] Read more.
Understanding drought evolution and its driving factors is crucial for effective water resource management and forecasting. This study enhances the analysis of drought probability by constructing bivariate distributions, providing a more realistic perspective than single-characteristic approaches. Additionally, a meteorological drought migration model is established to explore spatiotemporal paths and related characteristics of major drought events in the Choushui River alluvial fan. The results reveal a significant increase in the probability of southward-moving drought events after 1981. Before 1981, drought paths were diverse, while after 1981, these paths became remarkably similar, following a trajectory from north to south. This is primarily attributed to the higher rainfall in the northern region of the Choushui River alluvial fan from February to April, leading to a consistent southward movement of drought centroids. This study proposes that climate change is a primary factor influencing changes in the spatiotemporal paths of drought. It implies that changes in rainfall patterns and climate conditions can be discerned through the meteorological drought migration model. As a result, it provides the potential for simplifying drought-monitoring methods. These research findings provide further insight into the dynamic process of drought in the Choushui River alluvial fan and serve as valuable references for future water resource management. Full article
Show Figures

Figure 1

11 pages, 2148 KiB  
Article
Meroterpenoids from Marine Sponge Hyrtios sp. and Their Anticancer Activity against Human Colorectal Cancer Cells
by Jie Wang, Yue-Lu Yan, Xin-Yi Yu, Jia-Yan Pan, Xin-Lian Liu, Li-Li Hong and Bin Wang
Mar. Drugs 2024, 22(4), 183; https://doi.org/10.3390/md22040183 (registering DOI) - 19 Apr 2024
Abstract
Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their [...] Read more.
Two new meroterpenoids, hyrtamide A (1) and hyrfarnediol A (2), along with two known ones, 3-farnesyl-4-hydroxybenzoic acid methyl ester (3) and dictyoceratin C (4), were isolated from a South China Sea sponge Hyrtios sp. Their structures were elucidated by NMR and MS data. Compounds 24 exhibited weak cytotoxicity against human colorectal cancer cells (HCT-116), showing IC50 values of 41.6, 45.0, and 37.3 μM, respectively. Furthermore, compounds 3 and 4 significantly suppressed the invasion of HCT-116 cells while also downregulating the expression of vascular endothelial growth factor receptor 1 (VEGFR-1) and vimentin proteins, which are key markers associated with angiogenesis and epithelial–mesenchymal transition (EMT). Our findings suggest that compounds 3 and 4 may exert their anti-invasive effects on tumor cells by inhibiting the expression of VEGFR-1 and impeding the process of EMT. Full article
Show Figures

Figure 1

14 pages, 594 KiB  
Review
Anesthetic Considerations for Patients with Hereditary Neuropathy with Liability to Pressure Palsies: A Narrative Review
by Krzysztof Laudanski, Omar Elmadhoun, Amal Mathew, Yul Kahn-Pascual, Mitchell J. Kerfeld, James Chen, Daniella C. Sisniega and Francisco Gomez
Healthcare 2024, 12(8), 858; https://doi.org/10.3390/healthcare12080858 (registering DOI) - 19 Apr 2024
Abstract
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant demyelinating neuropathy characterized by an increased susceptibility to peripheral nerve injury from trauma, compression, or shear forces. Patients with this condition are unique, necessitating distinct considerations for anesthesia and surgical teams. [...] Read more.
Hereditary neuropathy with liability to pressure palsies (HNPP) is an autosomal dominant demyelinating neuropathy characterized by an increased susceptibility to peripheral nerve injury from trauma, compression, or shear forces. Patients with this condition are unique, necessitating distinct considerations for anesthesia and surgical teams. This review describes the etiology, prevalence, clinical presentation, and management of HNPP and presents contemporary evidence and recommendations for optimal care for HNPP patients in the perioperative period. While the incidence of HNPP is reported at 7–16:100,000, this figure may be an underestimation due to underdiagnosis, further complicating medicolegal issues. With the subtle nature of symptoms associated with HNPP, patients with this condition may remain unrecognized during the perioperative period, posing significant risks. Several aspects of caring for this population, including anesthetic choices, intraoperative positioning, and monitoring strategy, may deviate from standard practices. As such, a tailored approach to caring for this unique population, coupled with meticulous preoperative planning, is crucial and requires a multidisciplinary approach. Full article
(This article belongs to the Special Issue Anesthesiology and Perioperative Medicine)
Show Figures

Figure 1

11 pages, 1659 KiB  
Article
Simulation of Damage Caused by Oil Fire in Cable Passage to Tunnel Cable
by Feng Liu, Jiaqing Zhang, Mengfei Gu, Yushun Liu, Tao Sun and Liangpeng Ye
Fire 2024, 7(4), 147; https://doi.org/10.3390/fire7040147 (registering DOI) - 19 Apr 2024
Abstract
In order to evaluate the damage to tunnel cables caused by fire caused by leakage of transformer oil into a cable channel, the fire characteristics of different volumes of transformer oil flowing into a cable channel were analyzed by numerical simulation. The results [...] Read more.
In order to evaluate the damage to tunnel cables caused by fire caused by leakage of transformer oil into a cable channel, the fire characteristics of different volumes of transformer oil flowing into a cable channel were analyzed by numerical simulation. The results show that when the total leakage of transformer oil is less than or equal to 3 L, the fire will end within 120 s, and when the total leakage is greater than or equal to 5 L, the fire duration will exceed 900 s. When the leakage amount is 1 L, the cable only burns slightly, and when the leakage amount is 3~12 L, the cable burns obviously. The combustion of the cable is mainly concentrated between 15 s and 75 s, and the overall combustion rate of the cable increases first and then decreases. When the total leakage is greater than or equal to 8 L, the damage distance of the middle and lower layer cable is the smallest. When the total leakage is less than or equal to 5 L, the damage distance of the lower layer cable is the smallest, and the damage distance of the lower layer cable, middle and lower layer cable, and middle and upper layer cable is less than half of the length of the cable channel. Full article
(This article belongs to the Special Issue Cable and Electrical Fires)
Show Figures

Figure 1

14 pages, 989 KiB  
Review
Fertility Preservation in the Era of Immuno-Oncology: Lights and Shadows
by Erica Silvestris, Stella D’Oronzo, Easter Anna Petracca, Claudia D’Addario, Gennaro Cormio, Vera Loizzi, Stefano Canosa and Giacomo Corrado
J. Pers. Med. 2024, 14(4), 431; https://doi.org/10.3390/jpm14040431 (registering DOI) - 19 Apr 2024
Abstract
In recent years, immuno-oncology has revolutionized the cancer treatment field by harnessing the immune system’s power to counteract cancer cells. While this innovative approach holds great promise for improving cancer outcomes, it also raises important considerations related to fertility and reproductive toxicity. In [...] Read more.
In recent years, immuno-oncology has revolutionized the cancer treatment field by harnessing the immune system’s power to counteract cancer cells. While this innovative approach holds great promise for improving cancer outcomes, it also raises important considerations related to fertility and reproductive toxicity. In fact, most young females receiving gonadotoxic anti-cancer treatments undergo iatrogenic ovarian exhaustion, resulting in a permanent illness that precludes the vocation of motherhood as a natural female sexual identity. Although commonly used, oocyte cryopreservation for future in vitro fertilization and even ovarian cortex transplantation are considered unsafe procedures in cancer patients due to their oncogenic risks; whereas, ovarian stem cells might support neo-oogenesis, providing a novel stemness model of regenerative medicine for future fertility preservation programs in oncology. Recent scientific evidence has postulated that immune checkpoint inhibitors (ICIs) might in some way reduce fertility by inducing either primary or secondary hypogonadism, whose incidence and mechanisms are not yet known. Therefore, considering the lack of data, it is currently not possible to define the most suitable FP procedure for young patients who are candidates for ICIs. In this report, we will investigate the few available data concerning the molecular regulation of ICI therapy and their resulting gonadal toxicity, to hypothesize the most suitable fertility preservation strategy for patients receiving these drugs. Full article
(This article belongs to the Special Issue Current Trends and Future Challenges in Assisted Reproduction)
Show Figures

Figure 1

3 pages, 149 KiB  
Editorial
Public Spaces: Socioeconomic Challenges
by Teresa de Noronha
Land 2024, 13(4), 544; https://doi.org/10.3390/land13040544 (registering DOI) - 19 Apr 2024
Abstract
This Special Issue, entitled ‘Public Spaces: Socioeconomic Challenges’ considers the concept of general well-being from the point of view of collective achievements and/or external conditions that can favorably impact the individual when implemented within an urban structure [...] Full article
(This article belongs to the Special Issue Public Spaces: Socioeconomic Challenges)
13 pages, 2321 KiB  
Article
DMSO and Its Role in Differentiation Impact Efficacy of Human Adenovirus (HAdV) Infection in HepaRG Cells
by Katharina Hofmann, Samuel Hofmann, Franziska Weigl, Julia Mai and Sabrina Schreiner
Viruses 2024, 16(4), 633; https://doi.org/10.3390/v16040633 (registering DOI) - 19 Apr 2024
Abstract
Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent [...] Read more.
Differentiated HepaRG cells are popular in vitro cell models for hepatotoxicity studies. Their differentiation is usually supported by the addition of dimethyl sulfoxide (DMSO), an amphipathic solvent widely used in biomedicine, for example, in potential novel therapeutic drugs and cryopreservation of oocytes. Recent studies have demonstrated drastic effects, especially on epigenetics and extracellular matrix composition, induced by DMSO, making its postulated inert character doubtful. In this work, the influence of DMSO and DMSO-mediated modulation of differentiation on human adenovirus (HAdV) infection of HepaRG cells was investigated. We observed an increase in infectivity of HepaRG cells by HAdVs in the presence of 1% DMSO. However, this effect was dependent on the type of medium used for cell cultivation, as cells in William’s E medium showed significantly stronger effects compared with those cultivated in DMEM. Using different DMSO concentrations, we proved that the impact of DMSO on infectability was dose-dependent. Infection of cells with a replication-deficient HAdV type demonstrated that the mode of action of DMSO was based on viral entry rather than on viral replication. Taken together, these results highlight the strong influence of the used cell-culture medium on the performed experiments as well as the impact of DMSO on infectivity of HepaRG cells by HAdVs. As this solvent is widely used in cell culture, those effects must be considered, especially in screening of new antiviral compounds. Full article
(This article belongs to the Special Issue Research and Clinical Application of Adenovirus (AdV), Volume II)
Show Figures

Figure 1

23 pages, 16457 KiB  
Article
Research on the Law of Layered Fracturing in the Composite Roof Strata of Coal Seams via Hydraulic Fracturing
by Bo Wang, Enke Hou, Liang Ma, Zaibin Liu, Tao Fan, Zewen Gong, Yaoquan Gao, Wengang Du, Qiang Liu and Bingzhen Ma
Energies 2024, 17(8), 1941; https://doi.org/10.3390/en17081941 (registering DOI) - 19 Apr 2024
Abstract
Horizontal wells within the roof are an effective method to develop gas in broken and soft coal seams, and layer-penetrating fracturing is a key engineering method for the stimulating of horizontal wells within the roof of a coal seam. To understand the propagation [...] Read more.
Horizontal wells within the roof are an effective method to develop gas in broken and soft coal seams, and layer-penetrating fracturing is a key engineering method for the stimulating of horizontal wells within the roof of a coal seam. To understand the propagation law of fracture in the composite roof of coal seams, this study conducted research using numerical simulation and physical similarity simulation methods. Furthermore, engineering experiments were carried out at the Panxie coal mine in the Huainan Mining Area and the Luling coal mine in Huaibei Mining Area, to further validate this technology. The numerical simulation results indicated that fracture within the coal seam roof can propagate from the roof to the target coal seam, effectively fracturing the coal seam. Due to the coal seam’s plasticity being greater than that of the roof mudstone, the coal seam forms a broader fracture than the roof. With the increase in pseudo roof mudstone thickness and being under constant fracturing displacement, the energy consumed by the pseudo roof mudstone during fracturing causes a decrease in pore pressure when fracture extends to the coal seam, resulting in a reduction in fracture width. Therefore, the pseudo roof mudstone is an adverse factor for the expansion of hydraulic fracturing. Physical similarity simulation results demonstrated that when horizontal boreholes were arranged within the siltstone of the coal seam roof, were under reasonable vertical distance and high flow rate fracturing via fluid injection conditions, and if the coal seam had a thin pseudo roof mudstone, the fracture could propagate through the direct roof-pseudo roof interface and the pseudo roof-coal seam interface, extending to the lower coal seam. The fracture form was curved and had irregular vertical fractures, indicating that hydraulic fracturing can achieve production enhancement and the transformation of soft and hard coal seams. However, when the coal seam had a thick pseudo roof mudstone, the mudstone posed strong resistance to hydraulic fracturing, making it difficult for the fracture to propagate to the lower coal seam. Therefore, the pseudo roof mudstone plays a detrimental role in hydraulic fracturing and the production enhancement of coal seams. The engineering verification conducted at Panxie coal mine and Luling coal mine showed that by utilizing a construction drainage rate of 7.5 cubic meters per minute at Panxie coal mine, the maximum fracture length reached 218.3 m, with a maximum fracture height of 36.8 m. The maximum daily gas production of a single well reached 1450 cubic meters per day, with a total gas extraction volume of 43.62 × 104 cubic meters across 671 days. At Luling coal mine, utilizing a construction drainage rate of 10 cubic meters per minute, the maximum fracture length reached 169.1 m, with a maximum fracture height of 20.5 m. The maximum daily gas production of a single well reached 10,775 cubic meters per day, with a total gas extraction volume of 590 × 104 cubic meters for 1090 days. This indicated that the fracture within the roof of coal seams can penetrate the composite roof of coal seams and extend to the interior of the coal seams, achieving the purpose of transforming fractured and low-permeability coal seams and providing an effective mode of gas extraction. Full article
Show Figures

Figure 1

8 pages, 5629 KiB  
Case Report
Management of Double-Seropositive Anti-Glomerular Basement Membrane and Anti-Neutrophil Cytoplasmic Antibodies with 100% Crescentic Glomerulonephritis and Nephrotic Range Proteinuria in a Young Female
by Lalida Kunaprayoon, Emily T. C. Scheffel and Emaad M. Abdel-Rahman
Biomedicines 2024, 12(4), 906; https://doi.org/10.3390/biomedicines12040906 (registering DOI) - 19 Apr 2024
Abstract
Nephrotic range proteinuria in the setting of dual-positive anti-glomerular basement membrane (AGBM) and anti-neutrophil cytoplasmic antibodies (ANCAs) is rare. Furthermore, using rituximab as a primary immunosuppressant along with steroids and plasmapheresis has not been widely studied. We present a case of dual AGBM [...] Read more.
Nephrotic range proteinuria in the setting of dual-positive anti-glomerular basement membrane (AGBM) and anti-neutrophil cytoplasmic antibodies (ANCAs) is rare. Furthermore, using rituximab as a primary immunosuppressant along with steroids and plasmapheresis has not been widely studied. We present a case of dual AGBM and ANCA with nephrotic range proteinuria in a young female, where rituximab was used as a primary immunosuppressant with partial recovery. Full article
Show Figures

Figure 1

7 pages, 195 KiB  
Editorial
Research on Green Adsorbents
by Małgorzata Wiśniewska and Piotr Nowicki
Molecules 2024, 29(8), 1855; https://doi.org/10.3390/molecules29081855 (registering DOI) - 19 Apr 2024
Abstract
Adsorption processes play a crucial role in air purification, wastewater treatment, soil remediation technologies, noble metals recovery, and long-term energy storage systems [...] Full article
(This article belongs to the Special Issue Research on Green Adsorbents)
23 pages, 10293 KiB  
Article
Spatial-Temporal Evolution Characteristics and Driving Force Analysis of NDVI in Hubei Province, China, from 2001 to 2020
by Peng Chen, Hongzhong Pan, Yaohui Xu, Wenxiang He and Huaming Yao
Forests 2024, 15(4), 719; https://doi.org/10.3390/f15040719 (registering DOI) - 19 Apr 2024
Abstract
Exploring the characteristics of vegetation dynamics and quantitatively analyzing the potential drivers and the strength of their interactions are of great significance to regional ecological environmental protection and sustainable development. Therefore, based on the 2000–2022 MODIS NDVI dataset, supplemented by climatic, topographic, surface [...] Read more.
Exploring the characteristics of vegetation dynamics and quantitatively analyzing the potential drivers and the strength of their interactions are of great significance to regional ecological environmental protection and sustainable development. Therefore, based on the 2000–2022 MODIS NDVI dataset, supplemented by climatic, topographic, surface cover, and anthropogenic data for the same period, the Sen+Mann–Kendall trend analysis, coefficient of variation, and Hurst exponent were employed to examine the spatial and temporal characteristics and trends of NDVI in Hubei Province, and a partial correlation analysis and geographical detector were used to explore the strength of the influence of driving factors on the spatial differentiation of NDVI in vegetation and the underlying mechanisms of interaction. The results showed that (1) the mean NDVI value of vegetation in Hubei Province was 0.762 over 23 years, with an overall increasing trend and fluctuating upward at a rate of 0.01/10a (p < 0.005); geospatially, there is a pattern of “low east and high west”; the spatial change in NDVI shows a trend of “large-scale improvement in the surrounding hills and mountains and small-scale degradation in the middle plains”; it also presents the spatial fluctuation characteristics of “uniform distribution in general, an obvious difference between urban and rural areas, and a high fluctuation of rivers and reservoirs”, (2) the future trend of NDVI in 70.76% of the region in Hubei Province is likely to maintain the same trend as that of the 2000–2022 period, with 70.78% of the future development being benign and dominated by sustained improvement, and (3) a combination of partial correlation analysis and geographical detector analysis of the drivers of vegetation NDVI change shows that land cover type and soil type are the main drivers; the interactions affecting the distribution and change characteristics of NDVI vegetation all showed two-factor enhancement or nonlinear enhancement relationships. This study contributes to a better understanding of the change mechanisms in vegetation NDVI in Hubei Province, providing support for differentiated ecological protection and project implementation. Full article
Show Figures

Figure 1

12 pages, 2342 KiB  
Article
Synthesis and Catalytic Performance of High-Entropy Rare-Earth Perovskite Nanofibers: (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3 in Low-Temperature Carbon Monoxide Oxidation
by Paweł A. Krawczyk, Jan Wyrwa and Władysław W. Kubiak
Materials 2024, 17(8), 1883; https://doi.org/10.3390/ma17081883 (registering DOI) - 19 Apr 2024
Abstract
This study investigated the catalytic properties of low-temperature oxidation of carbon monoxide, focusing on (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3 synthesized via a glycothermal method using 1,4-butanediol and diethylene glycol at 250 °C. This synthesis route bypasses [...] Read more.
This study investigated the catalytic properties of low-temperature oxidation of carbon monoxide, focusing on (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3 synthesized via a glycothermal method using 1,4-butanediol and diethylene glycol at 250 °C. This synthesis route bypasses the energy-intensive sintering process at 1200 °C while maintaining a high-entropy single-phase structure. The synthesized material was characterized structurally and chemically by X-ray diffraction and SEM/EDX analyses. The material was shown to form nanofibers of (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3, thereby increasing the active surface area for catalytic reactions, and crystallize in the model Pbnm space group of distorted perovskite cell. Using a custom setup to investigate catalytic properties of (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3, the CO oxidation behavior of those high-entropy perovskite oxide was investigated, showing an overall conversion of 78% at 50 °C and 97% at 100 °C. These findings highlight the effective catalytic activity of nanofibers of (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3 under mild conditions and their versatility in various catalytic processes of robust CO neutralization. The incorporation of rare-earth elements into a high-entropy structure could impart unique catalytic properties, promoting a synergistic effect that enhances performance. Full article
Show Figures

Figure 1

18 pages, 1822 KiB  
Review
Microcystin Contamination in Irrigation Water and Health Risk
by Mohammed Haida, Fatima El Khalloufi, Richard Mugani, Yasser Essadki, Alexandre Campos, Vitor Vasconcelos and Brahim Oudra
Toxins 2024, 16(4), 196; https://doi.org/10.3390/toxins16040196 (registering DOI) - 19 Apr 2024
Abstract
Microcystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial [...] Read more.
Microcystins (MCs), natural hepatotoxic compounds produced by cyanobacteria, pose significant risks to water quality, ecosystem stability, and the well-being of animals, plants, and humans when present in elevated concentrations. The escalating contamination of irrigation water with MCs presents a growing threat to terrestrial plants. The customary practice of irrigating crops from local water sources, including lakes and ponds hosting cyanobacterial blooms, serves as a primary conduit for transferring these toxins. Due to their high chemical stability and low molecular weight, MCs have the potential to accumulate in various parts of plants, thereby increasing health hazards for consumers of agricultural products, which serve as the foundation of the Earth’s food chain. MCs can bioaccumulate, migrate, potentially biodegrade, and pose health hazards to humans within terrestrial food systems. This study highlights that MCs from irrigation water reservoirs can bioaccumulate and come into contact with plants, transferring into the food chain. Additionally, it investigates the natural mechanisms that organisms employ for conjugation and the microbial processes involved in MC degradation. To gain a comprehensive understanding of the role of MCs in the terrestrial food chain and to elucidate the specific health risks associated with consuming crops irrigated with water contaminated with these toxins, further research is necessary. Full article
Show Figures

Figure 1

18 pages, 1462 KiB  
Review
Research Progress on Anti-Inflammatory Effects and Related Mechanisms of Astragalin
by Jingya Ruan, Zhongwei Shi, Xiaoyan Cao, Zhunan Dang, Qianqian Zhang, Wei Zhang, Lijie Wu, Yi Zhang and Tao Wang
Int. J. Mol. Sci. 2024, 25(8), 4476; https://doi.org/10.3390/ijms25084476 (registering DOI) - 19 Apr 2024
Abstract
Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of [...] Read more.
Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of flavonoid glycoside that is the primary component in several widely used traditional Chinese anti-inflammatory medications in clinical practice, has garnered attention from numerous experts and scholars. This article focuses on the anti-inflammatory effects of AST and conducts research on relevant literature from 2003 to 2023. The findings indicate that AST demonstrates promising anti-inflammatory potential in various models of inflammatory diseases. Specifically, AST is believed to possess inhibitory effects on inflammation-related factors and protein levels in various in vitro cell models, such as macrophages, microglia, and epithelial cells. In vivo studies have shown that AST effectively alleviates neuroinflammation and brain damage while also exhibiting potential for treating moderate diseases such as depression and stroke; it also demonstrates significant anti-inflammatory effects on both large and small intestinal epithelial cells. Animal experiments have further demonstrated that AST exerts therapeutic effects on colitis mice. Molecular biology studies have revealed that AST regulates complex signaling networks, including NF-κB, MAPK, JAK/STAT pathways, etc. In conclusion, this review will provide insights and references for the development of AST as an anti-inflammatory agent as well as for related drug development. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 10994 KiB  
Article
A New Module for the Evaluation of Bridges Based on Visual Inspection through a Digital Application Linked to an Up-to-Date Database of Damage Catalog for Colombia
by Edgar E. Muñoz-Diaz, Andrés Vargas-Luna, Federico Nuñez-Moreno, Carlos F. Florez, Yezid A. Alvarado, Daniel M. Ruiz, Álvaro Mora and Juan F. Correal
Buildings 2024, 14(4), 1150; https://doi.org/10.3390/buildings14041150 (registering DOI) - 19 Apr 2024
Abstract
Road structures undergo a series of chemical and physical processes once they are put into service. This phenomenon results from the action of the load and the influence of the environment, which causes their progressive deterioration. In order to mitigate the risk of [...] Read more.
Road structures undergo a series of chemical and physical processes once they are put into service. This phenomenon results from the action of the load and the influence of the environment, which causes their progressive deterioration. In order to mitigate the risk of progressive deterioration and guarantee their stability and durability, various maintenance tasks are required, including visual inspections. The Intelligent Bridge Management System of Colombia (SIGP) includes visual inspection as one of its modules. The system has been designed based on state-of-the-art criteria and national experience with relevant damages and bridge collapses. This paper presents the visual inspection methodology, which includes several stages such as a classification scale, condition index, evaluation areas, damage catalog, and evaluation criteria. In addition, a digital application has been developed to facilitate real-time data collection during field inspections using mobile devices, which can be uploaded directly to the system database hosted in the cloud. The results from the inspection of bridges of different typologies and years of construction are presented, as well as general inspection results from 150 bridges in Colombia. The relevance, comprehensiveness, and accuracy of the inspection are supported by a damage catalog, which allows the identification of intervention needs and reduces the bias of the collected data. Full article
Show Figures

Figure 1

11 pages, 256 KiB  
Article
Association between MCU Gene Polymorphisms with Obesity: Findings from the All of Us Research Program
by Jade Avery, Tennille Leak-Johnson and Sharon C. Francis
Genes 2024, 15(4), 512; https://doi.org/10.3390/genes15040512 (registering DOI) - 19 Apr 2024
Abstract
Obesity is a public health crisis, and its prevalence disproportionately affects African Americans in the United States. Dysregulation of organelle calcium homeostasis is associated with obesity. The mitochondrial calcium uniporter (MCU) complex is primarily responsible for mitochondrial calcium homeostasis. Obesity is [...] Read more.
Obesity is a public health crisis, and its prevalence disproportionately affects African Americans in the United States. Dysregulation of organelle calcium homeostasis is associated with obesity. The mitochondrial calcium uniporter (MCU) complex is primarily responsible for mitochondrial calcium homeostasis. Obesity is a multifactorial disease in which genetic underpinnings such as single-nucleotide polymorphisms (SNPs) may contribute to disease progression. The objective of this study was to identify genetic variations of MCU with anthropometric measurements and obesity in the All of Us Research Program. Methods: We used an additive genetic model to assess the association between obesity traits (body mass index (BMI), waist and hip circumference) and selected MCU SNPs in 19,325 participants (3221 normal weight and 16,104 obese). Eleven common MCU SNPs with a minor allele frequency ≥ 5% were used for analysis. Results: We observed three MCU SNPs in self-reported Black/African American (B/AA) men, and six MCU SNPs in B/AA women associated with increased risk of obesity, whereas six MCU SNPs in White men, and nine MCU SNPs in White women were protective against obesity development. Conclusions: This study found associations of MCU SNPs with obesity, providing evidence of a potential predictor of obesity susceptibility in B/AA adults. Full article
(This article belongs to the Special Issue Genetics of Obesity)
15 pages, 4732 KiB  
Article
Leveraging Neighbor Attention Initialization (NAI) for Efficient Training of Pretrained LLMs
by Qiao Tan and Jingjing Zhang
Electronics 2024, 13(8), 1550; https://doi.org/10.3390/electronics13081550 (registering DOI) - 19 Apr 2024
Abstract
In the realm of pretrained language models (PLMs), the exponential increase in computational resources and time required for training as model sizes expand presents a significant challenge. This paper proposes an innovative approach named neighbor attention initialization (NAI) to expedite the training process [...] Read more.
In the realm of pretrained language models (PLMs), the exponential increase in computational resources and time required for training as model sizes expand presents a significant challenge. This paper proposes an innovative approach named neighbor attention initialization (NAI) to expedite the training process of larger PLMs by leveraging smaller PLMs through parameter initialization. Our methodology hinges on the hypothesis that smaller PLMs, having already learned fundamental language structures and patterns, can provide a robust foundational knowledge base for larger models, which is called function preserving. Specifically, we present a comprehensive framework detailing the process of transferring learned features on transformer-based language models mainly using the neighbor attention head and neighbor layer. We conducted experiments in GPT-2 and demonstrated that our method yields considerable savings in training costs compared to standard approaches, including learning from scratch and bert2BERT, indicating a notable improvement in training efficiency for large PLMs. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

14 pages, 2568 KiB  
Article
Development of New Predictive Equations for the Resting Metabolic Rate (RMR) of Women with Lipedema
by Małgorzata Jeziorek, Jakub Wronowicz, Łucja Janek, Krzysztof Kujawa and Andrzej Szuba
Metabolites 2024, 14(4), 235; https://doi.org/10.3390/metabo14040235 (registering DOI) - 19 Apr 2024
Abstract
Background: This study aimed to develop a novel predictive equation for calculating resting metabolic rate (RMR) in women with lipedema. Methods: We recruited 119 women diagnosed with lipedema from the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using indirect [...] Read more.
Background: This study aimed to develop a novel predictive equation for calculating resting metabolic rate (RMR) in women with lipedema. Methods: We recruited 119 women diagnosed with lipedema from the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using indirect calorimetry, while body composition and anthropometric measurements were conducted using standardized protocols. Due to multicollinearity among predictors, classical multiple regression was deemed inadequate for developing the new equation. Therefore, we employed machine learning techniques, utilizing principal component analysis (PCA) for dimensionality reduction and predictor selection. Regression models, including support vector regression (SVR), random forest regression (RFR), and k-nearest neighbor (kNN) were evaluated in Python’s scikit-learn framework, with hyperparameter tuning via GridSearchCV. Model performance was assessed through mean absolute percentage error (MAPE) and cross-validation, complemented by Bland–Altman plots for method comparison. Results: A novel equation incorporating body composition parameters was developed, addressing a gap in accurate RMR prediction methods. By incorporating measurements of body circumference and body composition parameters alongside traditional predictors, the model’s accuracy was improved. The segmented regression model outperformed others, achieving an MAPE of 10.78%. Conclusion: The proposed predictive equation for RMR offers a practical tool for personalized treatment planning in patients with lipedema. Full article
(This article belongs to the Special Issue Epidemiology, Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 3888 KiB  
Article
Design Analysis of Mass Timber and Volumetric Modular Strategies as Counterproposals for an Existing Reinforced Concrete Hotel
by Marie-Laure Filion, Sylvain Ménard, Carlo Carbone and Mohamad Bader Eddin
Buildings 2024, 14(4), 1151; https://doi.org/10.3390/buildings14041151 (registering DOI) - 19 Apr 2024
Abstract
Construction professionals work in silos and use traditional design and construction methods. The growing demand for rapidly built and high-quality construction is making off-site manufacturing mainstream. Studies have shown that collaboration among all stakeholders is a necessary component for success in the construction [...] Read more.
Construction professionals work in silos and use traditional design and construction methods. The growing demand for rapidly built and high-quality construction is making off-site manufacturing mainstream. Studies have shown that collaboration among all stakeholders is a necessary component for success in the construction of such buildings. This multidisciplinary study of an existing concrete hotel aims to explore an alternative structural design in mass timber or volumetric modular construction. To this end, the reinforced concrete floor plan of Club Med de Charlevoix in Quebec, Canada, was used as a benchmark for two different structural systems. The first strategy investigated CLT (cross-laminated timber) and glulam columns to replicate the reinforced concrete system (column–slab), while the second involved maximum prefabrication (volumetric modular construction). Both mass timber and volumetric modular strategies can lead to a smaller carbon footprint. The main conclusion is that the plan should be designed from the outset to be either traditional or prefabricated since major changes are required if the choice is made to switch from one system to the other. Moreover, when structural systems maximize off-site construction, such as volumetric modular construction, the various professions need to be included during early planning. This is necessary to avoid task duplication and prevent the neglect of considerations such as manufacturable dimensions and partition organization. Full article
(This article belongs to the Special Issue Timber Buildings - Design for the Future)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop