Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 21, 2015

Cropland soil organic matter content change inNortheast China, 1985-2005

  • Yanmin Yao , Liming Ye , Huajun Tang , Pengqin Tang , Deying Wang , Haiqing Si , Wenjun Hu and Eric Van Ranst
From the journal Open Geosciences

Abstract

Soil organic matter (SOM) content is one of themost important indicators of soil quality and hence theproductive capacity of soils. Northeast China (NEC) is themost important region in grain production in China. Inthis study,we assessed the spatiotemporal change of croplandSOM content in NEC using sampling data of 2005 andsurvey data of 1985. We also analysed the driving forcesbehind the SOM content change. Our results showed thatSOM content decreased in 39% of all the cropland in NEC,while increase in SOM content was only detected on 16%of the cropland. SOM remained unchanged in nearly half(i.e. 45%) of the cropland. Our results also revealed thatcropping intensity and fertilizer application were the twomost important factors driving SOM change. Overall, resultsfrom this research provided novel details of the spatiotemporalpatterns of cropland SOM content change inNEC which was not revealed in earlier assessments. Thedatasets presented here can be used not only as baselinesfor the calibration of process-based carbon budget models,but also to identify regional soil quality hotspots andto guide spatial-explicit soil management practices.

References

[1] Carter M.R., Organic matter and sustainability. In: Rees R.M.,Ball B.C., Campbell C.D., Watson C.A. (Eds.), Sustainable Managementof Soil Organic Matter. CABI Publishing, Oxon and NewYork, 2001, 9-41Search in Google Scholar

[2] Ye L., Van Ranst E., Production scenarios and the effect of soildegradation on long-term food security in China. Global Environ.Chang., 2009, 19, 464-48110.1016/j.gloenvcha.2009.06.002Search in Google Scholar

[3] Duval M.E., Galantini J.A., Iglesias J.O., Canelo S., Martinez J.M.,Wall L., Analysis of organic fractions as indicators of soil qualityunder natural and cultivated systems. Soil Till. Res., 2013, 131,11-1910.1016/j.still.2013.03.001Search in Google Scholar

[4] Lal R., Soil carbon sequestration impacts on global climatechange and food security. Science, 2004, 304, 1623-162710.1126/science.1097396Search in Google Scholar PubMed

[5] Ye L., Tang H., Zhu J., Verdoodt A., Van Ranst E., Spatial patternsand effects of soil organic carbon on grain productivity assessmentin China. Soil Use Manage., 2008, 24, 80-9110.1111/j.1475-2743.2007.00136.xSearch in Google Scholar

[6] Ye L., Xiong W., Li Z., Yang P., Wu W., Yang G. et al., Climatechange impact on China food security in 2050. Agron. Sustain.Dev., 2013, 33, 363-37410.1007/s13593-012-0102-0Search in Google Scholar

[7] Ye L., Tang H.,WuW., Yang P., Nelson G.C.,Mason-D’Croz D. et al.,Chinese food security and climate change: Agriculture futures.Economics-Kiel, 2014, 8 (2014-1), DOI: 10.5018/economicsejournal.ja.2014-1.Search in Google Scholar

[8] Powlson D.S., Gregory P.J., Whalley W.R., Quinton J.N., HopkinsD.W., Whitmore A.P. et al., Soil management in relation to sustainableagriculture and ecosystem services. Food Policy, 2011,36, S72-S8710.1016/j.foodpol.2010.11.025Search in Google Scholar

[9] Fang H., Yang X., Zhang X., Organic carbon stock of black soils inNortheast China and its contribution to atmospheric CO2. J. SoilWater Conserv., 2003, 17, 9-12Search in Google Scholar

[10] Huang Y., SunW.J., Variation trend of surface soil organic carbonin China for nearly two decades. Chinese Sci. Bull., 2006, 51, 750-76310.1007/s11434-006-2056-6Search in Google Scholar

[11] Wang J., Wang T., Zhang X., Guan L., Wang Q., Hu H. et al.,Black soil quality change I, changes in reclamation duration. J.Shenyang Agric. Univ., 2002, 33, 43-47Search in Google Scholar

[12] National Bureau of Statistics of China, China Compendium ofStatistics 1949-2008. China Statistical Press, Beijing, 2010Search in Google Scholar

[13] Tang H., Qiu J., Van Ranst E., Li C., Estimations of soil organiccarbon storage in cropland of China based on DNDC model. Geoderma,2006, 134, 200-20610.1016/j.geoderma.2005.10.005Search in Google Scholar

[14] Wang J., Lu C., Xu M., Zhu P., Huang S., Zhang W. et al., Soil organiccarbon sequestration under different fertilizer regimes innorth and northeast China: RothC simulation. Soil Use Manage.,2013, 29, 182-19010.1111/sum.12032Search in Google Scholar

[15] Yu Y., Huang Y., Zhang W., Projected changes in soil organic carbonstocks of China’s croplands under different agriculturalmanagements,2011-2050. Agric. Ecosyst. Environ, 2013, 178, 109-12010.1016/j.agee.2013.06.008Search in Google Scholar

[16] Zhong Y., Collection of Cropland Soil Fertility Monitoring Resultsin China. China Agricultural Press, Beijing, 2003, 3-28 (in Chinese)Search in Google Scholar

[17] Bisutti I., Hilke I., Raessler M., Determination of total organiccarbon - an overview of current methods. TRAC-Trend Anal.Chem., 2004, 23, 716-72610.1016/j.trac.2004.09.003Search in Google Scholar

[18] Yan X., Cai Z., Wang S., Smith P., Direct measurement of soil organiccarbon content change in the croplands of China. GlobalChange Biol., 2011, 17, 1487-149610.1111/j.1365-2486.2010.02286.xSearch in Google Scholar

[19] Piccini C., Marchetti A., Francaviglia R., Estimation of soil organicmatterby geostatistical methods: Use of auxiliary informationin agricultural and environmental assessment. Ecol. Indic.,2014, 36, 301-31410.1016/j.ecolind.2013.08.009Search in Google Scholar

[20] Maindonald J., Braun W.J., Data Analysis and Graphics UsingR - an Example-Based Approach, 3rd Ed. Cambridge UniversityPress, Cambridge, 201010.1017/CBO9781139194648Search in Google Scholar

[21] Ye L., Verdoodt A., Moussadek R., Tang H., Van Ranst E., Assessmentof China’s food producing capacities using a Web-basedland evaluation engine and a grid-based GIS. Adv. Geoecol.,2008, 39, 699-718Search in Google Scholar

[22] Mishra U., Lal R., Slater B., Calhoun F., Liu D., Van Meirvenne M.,Predicting soil organic carbon stock using profile depth distributionfunctions and ordinary kriging. Soil Sci. Soc. Am. J., 2009,73, 614-62110.2136/sssaj2007.0410Search in Google Scholar

[23] National Soil Survey Oflce (NSSO), The Soils of China. ChinaAgricultural Press, Beijing, 1998 (in Chinese)Search in Google Scholar

[24] Xu Y., Zhang F., Hao X., Wang J., Wang R., Kong X., Influenceof management practices on soil organic matter changes in theNorthern China Plain and Northeastern China. Soil Till. Res.,2006, 86, 230-23610.1016/j.still.2005.02.027Search in Google Scholar

[25] Tan J., Yang P., Liu Z., Wu W., Zhang L., Li Z. et al., Spatiotemporaldynamics of maize cropping system in Northeast Chinabetween 1980 and 2010 by using spatial production allocationmodel. J. Geogr. Sci., 2014, 24, 397-41010.1007/s11442-014-1096-0Search in Google Scholar

[26] Potter P., Ramankutty N., Bennett E.M., Donner S.D., Characterizingthe spatial patterns of global fertilizer application and manureproduction. Earth Interact., 2010, 14, 1-2210.1175/2009EI288.1Search in Google Scholar

[27] R Core Team, R: A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna, 2013,http://www.R-project.org/Search in Google Scholar

[28] Ding X., Han X., Liang Y., Qiao Y., Li L., Li N., Changes in soil organiccarbon pools after 10 years of continuous manuring combinedwith chemical fertilizer in a Mollisol in China. Soil Till. Res.,2012, 122, 36-4110.1016/j.still.2012.02.002Search in Google Scholar

[29] Yu Y., Guo Z., Wu H., Kahmann J.A., Oldfield F., Spatial changesin soil organic carbon density and storage of cultivated soils inChina from 1980 to 2000, Global Biogeochem. Cy., 2009, 23,GB202110.1029/2008GB003428Search in Google Scholar

[30] ZhangW.,Wang X., Xu M., Huang S., Liu H., Peng C., Soil organiccarbon dynamics under long-term fertilizations in arable land ofnorthern China. Biogeosciences, 2010, 7, 409-42510.5194/bg-7-409-2010Search in Google Scholar

[31] Cheng K., Pan G., Tian Y., Li L., Changes in topsoil organic carbonof China’s cropland evidenced from the National Soil MonitoringNetwork. J. Agro-Environ. Sci., 2009, 28, 2476-2481Search in Google Scholar

[32] Pan P., Xu X., Smith P., PanW., Lal R., An increase in topsoil SOCstock of China’s croplands between 1985 and 2006 revealed bysoil monitoring. Agr. Ecosyst. Environ., 2010, 136, 133-13810.1016/j.agee.2009.12.011Search in Google Scholar

[33] Zhu L., Yang M., Chen C., Effect of improved management practiceson soil organic carbon sequestration in wheat-maize doublecropping system in North China, J. Agric. Sci., 2012, 4, 114-12510.5539/jas.v4n9p114Search in Google Scholar

[34] Li Z., Li X., Li M., Yang J., Turner N., Wang X. et al., Countyscalechanges in soil organic carbon of croplands in southeasternGansu province of China from the 1980s to the mid-2000s. SoilSci. Soc. Am. J., 2013, 77, 2111-212110.2136/sssaj2013.05.0192Search in Google Scholar

[35] Wang S., Zhou C., Li K., Zhu S., Huang F., Analysis on spatial distributioncharacteristics of soil organic carbon reservoir in China.Acta Geogr. Sinica, 2000, 55, 533-544 (in Chinese)Search in Google Scholar

[36] Wu H., Guo Z., Peng C., Distribution and storage of soil organiccarbon in China. Global Biogeochem. Cy., 2003, 17, 104810.1029/2001GB001844Search in Google Scholar

[37] Acín-Carrera M., JoséMarques M., Carral P., Álvarez A.M., LópezC.,Martín-López B. et al., Impacts of land-use intensity on soil organiccarbon content, soil structure and water-holding capacity.Soil Use Manage., 2013, 29, 547-55610.1111/sum.12064Search in Google Scholar

[38] Liu X., Herbert S.J., Hashemi A.M., Zhang X., Ding G., Effectsof agricultural management on soil organic matter and carbontransformation - a review. Plant Soil Environ., 2006, 52, 531-54310.17221/3544-PSESearch in Google Scholar

[39] Baritz R., Seufert G., Montanarella L., Van Ranst E., Carbonconcentrations and stocks in forest soils of Europe. Forest Ecol.Manag., 2010, 260, 262-27710.1016/j.foreco.2010.03.025Search in Google Scholar

[40] Bot A., Benites J., The Importance of Soil Organic Matter: Key todrought-resistant soil and sustained food and production. FAOSoils Bulletin 80, FAO, Rome, 2005Search in Google Scholar

[41] Ye L., Yang G., Van Ranst E., Tang H., Time-series modeling andprediction of global monthly absolute temperature for environmentaldecision making. Adv. Atmos. Sci., 2013, 30, 382-396.10.1007/s00376-012-1252-3Search in Google Scholar

[42] van Wesemael B., Paustian K., Meersmans J., Goidts E., BarancikovaG., Easter M., Agricultural management explains historicchanges in regional soil carbon stocks. P. Natl. Acad. Sci. USA,2010, 107, 14926-1493010.1073/pnas.1002592107Search in Google Scholar PubMed PubMed Central

[43] Liu J., Liu M., Tian H., Zhuang D., Zhang Z., ZhangW., et al., Spatialand temporal patterns of China’s cropland during 1990-2000:An analysis based on Landsat TM data. Remote Sens. Environ.,2005, 98, 442-45610.1016/j.rse.2005.08.012Search in Google Scholar

[44] She G., Chen Y., Yao Y., Chen Y., The changes and macro-controlof cropland soil in Northeast China in the last decade. Econ. Geogr.,2005, 25, 391-396Search in Google Scholar

[45] Yue T., Wang Y., Liu J., Chen S., Qiu D., Deng X. et al., Surfacemodelling of human population distribution in China. Ecol.Model., 2005, 181, 461-47810.1016/j.ecolmodel.2004.06.042Search in Google Scholar

[46] Sleutel S., De Neve S., Hofman G., Estimates of carbon stockchanges in Belgian cropland. Soil Use Manage., 2003, 19, 166-17110.1079/SUM2003187Search in Google Scholar

[47] Bellamy P.H., Loveland P.J., Bradley R.I., Lark R.M., Kirk G.J.D.Carbon losses from all soils across England and Wales, 1978-2003. Nature, 2005, 437, 245-24810.1038/nature04038Search in Google Scholar PubMed

[48] Wade T.G., Wickham J.D., Nash M.S., Neale A.C., Riitters K.H.,Jones K.B., A Comparison of vector and raster GIS methods forcalculating landscape metrics used in environmental assessments.Photogramm. Eng. Rem. S., 2003, 69, 1399-140510.14358/PERS.69.12.1399Search in Google Scholar

[49] Yu D.S., Ni Y.L., Shi X.Z., Wang N., Warner E.D., Liu Y. et al., Optimalsoil raster unit resolutions in estimation of soil organic carbonpool at different map scales. Soil Sci. Soc. Am. J. 2014, 78,1079-108610.2136/sssaj2013.07.0262Search in Google Scholar

[50] Kempen B., Heuvelink G.B.M., Brus D.J., Stoorvogel J.J., Pedometricmappingof soil organicmatter using a soilmapwith quantifieduncertainty. Eur. J. Soil Sci., 2010, 61, 333-34710.1111/j.1365-2389.2010.01232.xSearch in Google Scholar

[51] Taghizadeh-Toosia A., Olesen J.E., Kristensen K., Elsgaard L.,Østergaard H.S., Lægdsmand M. et al., Changes in carbon stocksof Danish agricultural mineral soils between 1986 and 2009. Eur.J. Soil Sci., 2014, 65, 730-74010.1111/ejss.12169Search in Google Scholar

[52] USGS, USGS global 30 arc-second elevation data set (GTOPO30DEM), 1996, https://lta.cr.usgs.gov/GTOPO30Search in Google Scholar

Received: 2014-10-29
Accepted: 2015-04-20
Published Online: 2015-08-21

©2015 Yanmin Yao et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/geo-2015-0034/html
Scroll to top button