
On the relevance of extremal dependence for spatial1

statistical modelling of natural hazards2

Laura C. Dawkins1∗ and David B. Stephenson1

1 College of Engineering, Mathematics and Physical Sciences, University of Exeter,

Exeter, UK

∗ E-mail: L.C.Dawkins@exeter.ac.uk

3

1

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-102
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 23 April 2018
c© Author(s) 2018. CC BY 4.0 License.



Abstract4

Natural hazard loss portfolios with exposure over a region are sensitive to the5

dependency between extreme values of the key hazard variable at different spatial6

locations. It is therefore important to correctly identify and quantify dependency7

to avoid poor quantification of risk.8

This study demonstrates how bivariate extreme value tail dependency methods9

can be used together in a novel way to explore and quantify extremal dependency10

in spatial hazard fields. A relationship between dependency and loss is obtained11

by deriving how the probability distribution of conceptual loss depends on the tail12

dependency coefficient.13

The approaches are illustrated by applying them to 6103 historical European14

windstorm footprints (spatial maps of 3-day maximum gust speeds). We find there15

is little evidence of asymptotic extremal dependency in windstorm footprints. Fur-16

thermore, empirical extremal properties and conceptual loss distributions between17

pairs of locations are shown to be well reproduced using Gaussian copulas but not18

by extremally-dependent models such as Gumbel copulas.19

It is conjectured that the lack of asymptotic dependence is a generic property20

of turbulent flows, which may extend to other spatially continuous hazards such as21

heat waves and air pollution. These results motivate the potential of using Gaussian22

process (geostatistical) models for efficient simulation of hazard fields.23

Key Words: Natural hazards; Windstorm footprint; Bivariate dependence; Reinsur-24

ance; Copulas25
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1 Introduction26

Multivariate statistical models are increasingly used to explore the spatial characteris-27

tics of natural hazards and quantify potential risk. For example, multivariate statistical28

models for European windstorms are used by academics and re/insurers to create cata-29

logues of possible events, explore loss potentials, and benchmark synthetic events from30

atmospheric models (Bonazzi et al. 2012; Youngman and Stephenson 2016). Since nat-31

ural hazards are rare events in the tail of the distribution, correctly modelling extremal32

dependence is very important for valid inference (Eastoe et al., 2013), which, in turn, is33

essential for realistically representing potential hazard losses, often occurring at multiple34

spatial locations.35

As noted by Wadsworth et al. (2017), examples of modelling joint extremes often36

assume asymptotic dependence in order to accommodate asymptotically justified extreme37

value max-stable models. This is also common in the field of natural hazard research.38

Coles and Walshaw (1994) used a max-stable model for the dependence in maximum39

wind speeds in different directions; Blanchet et al. (2009) to model snow fall in the Swiss40

Alps; Huser and Davison (2013) to model extreme rainfall and Bonazzi et al. (2012) to41

model windstorm hazard fields at pairs of locations in Europe. Indeed, Bonazzi et al.42

(2012) simply base this modelling assumption on being “in line with many examples found43

in the literature”. Therefore, it seems sensible to ask, how valid is this assumption of44

asymptotic dependence? And how much of an effect might a misspecification of extremal45

dependence have on the resulting hazard loss representation?46

Contrary to the above examples, Bortot et al. (2000) provided a brief exploration47

of the extremal dependence between measurements of sea surge, wave height and wave48

period recorded off the south-west coast of England. Using pairwise scatter plots and49
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empirical estimates of the Extremal Dependence coefficients, χ and χ̄, introduced by50

Coles et al. (1999), they found evidence for asymptotic independence, and hence devel-51

oped a multivariate Gaussian tail model for their data, derived from the joint tail of a52

multivariate Gaussian distribution with margins based on univariate extreme value distri-53

butions. Bortot et al. (2000) showed that, when modelling data that are asymptotically54

independent, the Gaussian model is robust, has simple diagnostics, easily interpretable55

parameters and extends straightforwardly to higher dimensions. Similarly, Youngman56

and Stephenson (2016) acknowledged the possibility of asymptotic independence when57

developing a spatial statistical framework for simulating natural hazard events. They58

specified a Student’s t-process to model dependence, allowing for the form of extremal59

dependence to be determined by the estimated degrees of freedom parameter.60

In this study, we provide a more rigorous, critical approach for investigating spatial61

extremal dependence, which combines various bivariate extreme value modelling methods62

in a novel way. We apply this approach to windstorm hazard fields to explore the validity63

of the asymptotic dependence assumption made in previous studies, and provide a tur-64

bulence argument for the form of extremal dependence found. Furthermore, we present65

a comparison approach for exploring the impact of mis-specifying extremal dependence66

on realistically representing conceptual windstorm losses.67

To critically investigate spatial extremal dependence we initially employ the Extremal68

Dependence coefficients of Coles et al. (1999), χ(p) and χ̄(p), characterising the condi-69

tional probability of a pair of locations exceeding the same high quantile threshold, 1−p.70

The upper limit of these dependence measures determines the class of extremal depen-71

dence, hence this limit is explored both empirically, as in Bortot et al. (2000), and based72

on a number of parametric representations. For a given pair of locations within a wind-73
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storm hazard field, we fit Gumbel and Gaussian bivariate copula dependence models, each74

characterising apposing extremal dependence class, and explore how well these models75

represent the empirical estimates of χ(p) and χ̄(p). In addition, we fit the bivariate tail76

model of Ledford and Tawn (1996), able to characterise both classes of extremal de-77

pendence, and use the extremal dependence diagnostic approach of Ledford and Tawn78

(1996, 1997) to further identify extremal dependence class based on the coefficient of tail79

dependence parameter of this model.80

The impact of extremal dependence mis-specification on conceptual loss estimation is81

explored by comparing how well the Gumbel and Gaussian copula dependence models are82

able to represent empirical conceptual joint loss. Based on existing literature in the field83

of windstorm modelling, a quantile threshold exceedance loss model is proposed. The84

copula model comparison is then made in terms of their ability to represent χ(p) and85

χ̄(p) for the specified conceptual loss quantile threshold, and the expected conditional86

conceptual joint loss distributions for pairs of locations throughout Europe.87

In applying a similar critical investigation to an alternative continuous spatial variable,88

such as temperature, relevant for modelling heat wave risk, a natural hazard modeller89

will be able to diagnose the extremal dependence class present in the spatial field and90

explore the sensitivity of conceptual loss to a misspecification of this class. Rather than91

fitting a more complex model that can accommodate both types of extremal dependence,92

and therefore requires the estimation of additional parameters, this diagnostic approach93

allows the modeller to develop a model that specifically represents this statistical property,94

and hence the loss potentials, correctly; either using a max-stable model to characterise95

asymptotic dependence, as is most common in examples in the literature, or a Gaussian,96

or geostatistical model to characterise asymptotic independence, shown by Bortot et al.97
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(2000) to be robust and accurate in the upper tail.98

The remaining paper is organised as follows. The windstorm hazard data set, used99

throughout this paper, is described in Section 2. Our novel approach for critically inves-100

tigating spatial extremal dependence is presented and applied to the windstorm hazard101

data in Section 3, including a physical explanation for the form of extremal dependence102

identified, in Section 3.4. Section 4 describes our novel method for exploring the impact103

of extremal dependence on conceptual loss estimation, again applied to the windstorm104

data set.105

2 Data106

The windstorm footprint data set used in this paper is the same as that used in Dawkins107

et al. (2016), consisting of the 6103 windstorm events that occurred within the European108

domain during the 35 extended winters, October - March 1979/80 - 2013/14 (kindly109

provided by J. Standen and J. F. Lockwood at the Met Office).110

The windstorm footprint is defined as the maximum three second wind gust speed111

(in ms−1) at grid points in the region 15 ◦W to 25 ◦E in longitude and 35 ◦N to 70 ◦N in112

latitude over a 72 hour period centred on the time at which the maximum 925hPa wind113

speed occurred over land. The 925hPa wind speed is taken from ERA-interim reanalysis114

(Dee et al., 2011). The three second wind gust speed has a robust relationship with storm115

damage (Klawa and Ulbrich, 2003), and is commonly used in catastrophe models for risk116

quantification (Roberts et al., 2014). A 72 hour windstorm duration is commonly used117

in the insurance industry (Haylock, 2011), and is thought to capture the most damaging118

phase of the windstorms (Roberts et al., 2014).119

These 6103 historical windstorm events have been identified using the objective track-120
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ing approach of Hodges (1995) and the associated footprints are created by dynamically121

downscaling ERA-Interim reanalysis to a horizontal resolution of 25km using the Met122

Office unified model (MetUM). The wind gust speeds are calculated from wind speeds in123

the MetUM model, based on a simple gust parameterisation Ugust = U10m + Cσ, where124

U10m is the wind speed at 10 metre altitude, C is a constant determined from the universal125

turbulence spectra and σ is the standard deviation of the horizontal wind.126
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Figure 1: Hazard footprints for windstorms (a) Kyrill and (b) the Great Storm of October

‘87, with the location of the cities of London, Amsterdam and Madrid indicated.

Two such footprints for windstorms Kyrill (17th − 19th January 2007) and the Great127

Storm of October ‘87 (15th − 17th October 1987) are shown in Fig. 1. The variability in128

the intensity and location of extreme, damaging winds in these footprints demonstrate129

the potential importance of correctly modelling the spatial dependence between locations130

for realistically representing joint losses.131
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3 Extremal Dependency132

We show how various bivariate extreme value modelling methods can be brought together133

in a novel way to critically investigate the bivariate extremal dependence property of134

windstorm hazard fields. This approach is illustrated based windstorm footprint wind135

gust speeds at two pairs of locations, London-Amsterdam and London-Madrid. These136

three locations are shown in Fig. 1, and these two pairings are chosen because of their137

contrasting separation distances and directions, and hence degrees of dependence.138

3.1 Graphical summary using the empirical copula139

As a motivating example, the bivariate dependence in windstorm footprint wind gust140

speeds for London paired with Amsterdam and Madrid are presented in Figures 2 (a)141

and (c) respectively. These scatter plots show a greater degree of dependence between142

London and Amsterdam compared to London and Madrid. Indeed, multiple windstorms143

have losses occurring in London and Amsterdam at the same time, when loss is associated144

with wind gust speeds exceeding the 99% quantile at a given location, characterised by145

the top right-hand corner of each plot in Fig. 2. However, does this level of dependence146

between London and Amsterdam necessarily suggest asymptotic dependence?147

Let the n × 2 variable (X, Y ) represent the wind gust speeds associated with the148

n = 6103 windstorm events at any given pair of locations within the European domain,149

e.g. London and Amsterdam. The bivariate relationship between X and Y can be150

represented by two components, the marginal distributions of each variable, and their151

joint dependence. The dependence component of the relationships shown in Fig. 2 (a)152

and (c) can therefore be isolated by, for each location, transforming wind gust speeds153

associated with each of the windstorm events, e.g. Xi for i = 1, ..., n, to uniform margins154
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Figure 2: Scatter plot/empirical copulas comparing historical windstorm footprint wind

gust speeds (ms−1) in London paired with (a)/(b) Amsterdam and (c)/(d) Madrid.

Dashed lines show the 99% quantile of wind gust speed at each location, and labels

a-d represent the number of points in each section of each plot, related to being above or

below these high quantile thresholds.

using the estimator of the empirical distribution function ( 1
n

∑n
j=1 1Xj≤Xi), shown in Fig.155

2 (b) and (d) respectively. This is known as the empirical copula.156
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3.2 Measures for quantifying extremal dependence157

The degree of conditional dependence between locations, at a specified high quantile158

threshold, 1 − p, can then be explored, based on the empirical copula, using the Ex-159

tremal Dependence Coefficients, χ(p) and χ̄(p), introduced by Coles et al. (1999), and160

the asymptotic limit of these measures, as p→ 0, classifies the class of bivariate extremal161

dependence as either asymptotically dependent or asymptotically independent. These mea-162

sures are defined as,163

χ(p) = Pr(Y > y1−p|X > x1−p) =
Pr(Y > y1−p, X > x1−p)

p
, (1)

where x1−p and y1−p are the (1 − p)th quantiles of X and Y respectively, 0 ≤ χ(p) < 1164

for all 0 ≤ (1− p) ≥ 1, and,165

χ̄(p) =
2log(Pr(X > x1−p))

log(Pr(X > x1−p, Y > y1−p))
− 1 =

2log(p)

log(χ(p)p)
− 1 =

log(p)− log(χ(p))

log(p) + log(χ(p))
, (2)

where −1 ≤ χ̄(p) < 1 for all 0 ≤ (1− p) ≤ 1.166

Hence, if limp→0 χ(p) = χ(0) > 0, limp→0 χ̄(p) = χ̄(0) = 1, and the pair (X, Y ) are167

said to be asymptotically dependent with strength χ(0). If instead χ(0) = 0, and hence,168

χ̄(0) < 1, the pair are said to be asymptotically independent, and the non-vanishing169

measure χ̄(0) represents the strength of this non-asymptotic dependence.170

As an initial empirical exploration of bivariate extremal dependence class between171

variables, these conditional probability measures can be calculated empirically over a172

range of quantile thresholds, as shown in Fig. 3 for windstorm footprint wind gust speeds173

in London paired with Amsterdam and Madrid. These empirical estimates are calculated174

as functions of the counts (a,b,c,d) in Fig. 2, as defined in Table 1. Based on these em-175
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Figure 3: Dependence measures, χ(p)/χ̄(p), for p ∈ [0, 0.4], for windstorm footprint wind

gust speeds in London paired with (a)/(b) Amsterdam and (c)/(d) Madrid, calculated

empirically and based on the Gaussian, Gumbel and Power Law bivariate dependence

functions, as defined in Table 1.
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pirical estimates, for both pairs of locations, χ(p)→ 0 and χ̄(p) < 1 as p→ 0, suggesting176

asymptotic independence. In addition, Fig. 3 presents three parametric representations177

of these conditional probability measures, used to better explore the asymptotic limits,178

χ(0) and χ̄(0). These parametric forms are also shown in Table 1 and are discussed179

further in Section 3.3.180

3.3 Estimation of the tail dependence coefficient181

The rarity of extreme events within this historical data set makes it impossible to empir-182

ically quantify the asymptotic limits χ(0) and χ̄(0), necessary for extremal dependence183

class identification. To overcome this, Ledford and Tawn (1996) developed a bivariate184

tail model, able to characterise both classes of extremal dependence, which when fit to a185

bivariate random variable can be used to model the asymptotic limit of the conditional186

probability measures and specify the class of extremal dependence.187

As in Ledford and Tawn (1996), let Z1 and Z2 denote X and Y transformed to unit188

Fréchet margins respectively, that is Pr(Z1 ≤ z) = Pr(Z2 ≤ z) = exp(−1/z). Then the189

joint survivor function for Z1 and Z2, above some large quantile threshold z1−p, takes the190

form,191

Pr(Z1 > z1−p, Z2 > z1−p) ∼ L(z1−p)p
1/η, (3)

where p = Pr(Z1 > z1−p) = Pr(Z2 > z1−p),
1
2
≤ η ≤ 1 is a constant and L(z1−p) is a192

slowly varying function as p → 0. Based on this power law model, as shown by Coles193

et al. (1999),194
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χ(p) ∼ L(z1−p)p
1/η−1,

χ̄(p) =
2log(p)

log(L(z1−p)) + 1
η
log(p)

− 1,

→ 2η − 1 as p→ 0.

Hence, the parameter η, named the coefficient of tail dependence by Ledford and195

Tawn (1996), characterises the nature of the asymptotic dependence. When η = 1,196

χ(0) = L(z1−p and χ̄(0) = 1, hence the pair (X, Y ) are asymptotically dependent of197

degree L(z1−p). Alternatively, if η < 1, χ(0) = 0 and χ̄(0) = 2η − 1), and the pair are198

asymptotically independent with non-asymptotic dependence of degree 2η − 1.199

For a given pair, e.g. wind gust speeds in London and Amsterdam, the Ledford and200

Tawn (1996) is fit to the joint survivor function along the diagonal, equivalent to the201

univariate distribution of T = min{Z1, Z2}, known as the structure variable, which has202

length n. Using the stable two parameter Poisson process representation of T , presented203

by Ferro (2007), who employed the Ledford and Tawn (1996) model for the verification204

of extreme weather forecasts, the exceedance of T above a high threshold w has the form,205

Pr(T > t) =
1

n
exp

[
−
(
t− α
η

)]
for all t ≥ w, (4)

with location parameter α and scale parameter 0 < η ≤ 1, equivalent to η in Eqn. (3),206

estimated by maximum likelihood (Ferro, 2007).207

We fit this model to the pairs London-Amsterdam and London-Madrid, requiring the208

specification of the high threshold, w. This threshold must be high enough that this209

asymptotic model is valid, but low enough that enough data are used to estimate the210

parameters. Here, the 85% quantile of the structural variable T is selected, based on211
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stability plots of quantile thresholds w against model parameter estimates obtained by212

fitting the model to exceedances of w. Based on this choice of w, η = 0.78 < 1 for London-213

Amsterdam and η = 0.58 < 1 for London-Madrid, indicating asymptotic independence for214

both pairs of locations. Figure 3 shows how these fitted models represent the asymptotic215

limit of the conditional dependence measures χ(p) and χ̄(p) as p→ 0, the Poisson process216

form of which are presented in Table 1, referred to as the Power Law model.217

In addition, alternative parametric bivariate dependence models, known as the Gaus-218

sian and Gumbel copulas, characterising apposing extremal dependence class, can be used219

to model the pair (X, Y ), and hence χ(p) and χ̄(p), for comparison, also shown in Fig. 3.220

The representation of χ(p) and χ̄(p) in the limit p → 0 for these apposing models then221

gives further indication of the extremal dependence class.222

The Gumbel bivariate copula model characterises asymptotic dependence with the223

degree of dependence quantified by parameter r. For each pair of locations, this parameter224

is estimated via maximum likelihood using the copula R package. The Gaussian bivariate225

model characterises asymptotic independence with dependence parameter ρ, here, for226

each pair of locations, represented by the Spearman’s rank correlation coefficient. The227

parametric forms of χ(p) and χ̄(p) for these two apposing models are shown in Table 1.228

In Fig. 3, the Gumbel model is calculated as in Table 1, however, since the closed form229

definition for the Gaussian model in Table 1 only holds for the limit p→ 0, for this model230

χ(p) and χ̄(p) are estimated as the median of 1000 parametric bootstrap simulations from231

the associated bivariate normal distribution.232

For both pairs of locations in Fig. 3, the Power Law model characterises asymptotic233

independence, since χ(0) = 0 and χ̄(0) < 1. Asymptotic independence is further sup-234

ported by the success of the Gaussian, and failure of the Gumbel, dependence models in235
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Figure 4: Diagnostic plots of maximum likelihood estimates (solid) and 95% profile like-

lihood confidence intervals (dashed) of η, in Eqn. (4), for threshold w in the range of the

0.5− 1 quantile of T , for London paired with (a) Amsterdam and (b) Madrid.

capturing the empirical bivariate dependence structure in the upper limit, p → 0. The236

Gumbel model overestimates the conditional probability of joint extremes due to a mis-237

specification of asymptotic dependence, while the Gaussian model matches closely with238

the empirical estimates and the Power Law model.239

The Power Law model shown in Fig. 3 is based on using a high threshold, w, equal240

to the 85% quantile of the structural variable T . The resulting estimate of η, and hence241

the identification of extremal dependence class, depends on this threshold choice, hence242

the sensitivity of this diagnosis to the choice of threshold must be explored before a243

conclusion can be reached. As in Ledford and Tawn (1996, 1997), here this is done244

by observing the proportion of time η = 1 is within the profile likelihood confidence245

interval for η, when estimated over a range of values of w. The pair (X, Y ) are said to246

be asymptotically dependent if η = 1 is contained within these confidence intervals for a247

majority of the range of w, and asymptotically independent otherwise. This exploration248
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is presented for London paired with Amsterdam and Madrid in Fig. 4, confirming the249

diagnosis of asymptotic independence for both pairs, based on this criterion. Indeed, the250

same conclusion is reached when applying this methodology to additional pairs of land251

locations within the European domain, including neighbouring locations.252

3.4 Why are wind gust speeds asymptotically independent?253

It is of interest to ask whether there are fundamental fluid dynamical reasons for why254

wind gust speeds should be asymptotically independent at different spatial locations.255

One approach to answering this question is to consider extremal dependence in tur-256

bulent flows. The atmospheric flow in storm track regions is highly chaotic and irregular257

and is therefore turbulent rather than smoothly varying laminar flow (see Held 1999; and258

references therein). Furthermore, over short enough spatial distances, the horizontal flow259

in a storm may be considered to be stationary in space and directionally invariant, in260

other words, homogeneous isotropic turbulence.261

As originally proposed by Von Kármán (1937), turbulent wind fields can be efficiently262

and realistically simulated using stochastic processes (Mann, 1998). This approach is263

widely used for many applications such as testing loads on new aircraft designs. The264

basic assumption in homogeneous turbulence is that the Cartesian velocity components265

are independent Gaussian processes, each with a prescribed spatial covariance function.266

In the special case of isotropic turbulence, the spatial covariance functions are identical267

for each velocity component. Hence, for 2-dimensional windstorm gusts, the wind gust268

speed at spatial location, s, is given by X(s) =
√
u2 + v2, where u = u(s) and v = v(s)269

are independent Gaussian processes having identical covariance functions.270

So what can be deduced about the extremal dependence class of wind speeds from271
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such turbulence models? Firstly, since the individual velocity components are bivariate272

normal, they are asymptotically independent at different locations e.g. u1 = u(s1) and273

u2 = u(s2) are asymptotically independent when s1 differs from s2, and likewise for v(s).274

Furthermore, the square of each velocity component is also asymptotically independent.275

This can be proven by noting that Pr(u2
1 > t2) = 2Pr(u1 > t) and Pr(u2

1 > t2, u2
2 > t2) ≤276

4χmaxPr(u1 > t) where277

χmax =
max(Pr(u1 > t, u2 > t),Pr(u1 > t, u2 ≤ −t))

Pr(u1 > t)
,

and for bivariate normal velocity components χmax → 0 as the threshold t → ∞. The278

squared wind speeds at pairs of locations are sums of two such independent components,279

(X2, Y 2) = (u2
1 + v2

1, u
2
2 + v2

2), and so it would be surprising if somehow this pair were not280

also asymptotically independent.281

Unfortunately a proof of asymptotic independence between (X2, Y 2) (and hence (X, Y ))282

remains elusive. However, the conjecture can be tested by numerical simulation. By283

simulating velocities from bivariate normal distributions, we have found no evidence of284

extremal dependence in wind speeds even when each velocity component is highly cor-285

related. Figure 5 shows an example obtained by simulating a million wind speeds at286

two locations where the u and v velocity components are independent standard normal287

variates each with correlation of 0.9 between locations (i.e. the correlation between u1288

and u2 is 0.9). The squared wind speeds at each location are chi-squared distributed289

with 2 degrees of freedom but are not independent: there is positive association clearly290

visible in Fig. 5(a). To assess extremal dependence, Fig. 5(b) shows how the joint291

exceedance probability, Pr(X2 > t2, Y 2 > t2), and the marginal exceedance probability,292

Pr(X2 > t2) = Pr(Y 2 > t2), behave as threshold t2 is varied. As the threshold is increased293
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Figure 5: Simulation of wind speeds at two sites having highly correlated velocities (see

main text for details): (a) scatter plot of squared wind speeds at the two sites (1000 points

randomly sampled out of the million); (b) joint versus marginal exceedance probabilities

(on logarithmic axes). The dot shows an example obtained by counting the fraction of

points in the upper right and the right hand quadrants of (a). The curve has a steeper

slope than the dashed line (equal probabilities denoting complete dependence) suggesting

asymptotic independence.

18

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-102
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 23 April 2018
c© Author(s) 2018. CC BY 4.0 License.



the joint probability drops to zero faster than the marginal exceedance probability (the294

curve in Fig. 5(b) is steeper than the dashed line), which suggests that the ratio, the295

conditional probability of exceedance, equivalent to χ in Eqn. (1), will tend to zero in296

the asymptotic limit.297

4 Loss Distributions298

To explore the importance of correctly modelled extremal dependence on the distribution299

of a conceptual loss, we first define a conceptual loss function and then use it to compare300

how well the Gumbel and Gaussian copula dependence models, characterising apposing301

extremal dependence class, are able to represent empirical conceptual losses.302

In the absence of insurance industry exposure and vulnerability information, we define303

conceptual windstorm loss as a function of the footprint wind gust speeds, similar to304

many examples in the literature (see Dawkins et al. (2016) for a review). Following the305

conclusions of Roberts et al. (2014) and Dawkins et al. (2016), we propose a threshold306

exceedance conceptual loss function over land locations in Europe. Roberts et al. (2014)307

and Dawkins et al. (2016) showed that this form of loss function is more representative of308

extreme windstorm loss than the commonly used, more complex loss function of Klawa309

and Ulbrich (2003), which includes additional terms for cubed wind gust speed magnitude310

and population density. Roberts et al. (2014) used an exceedance threshold of 25ms−1
311

while Dawkins et al. (2016) used a threshold of 20ms−1, in line with the loss threshold312

used by German insurance companies (Klawa and Ulbrich, 2003). Here, however, similar313

to Klawa and Ulbrich (2003), we propose a locally varying wind gust speed quantile314

threshold, accounting for local adaptation to varying wind intensity.315

Figure 6 shows that the 99% quantile of windstorm footprint wind gust speed is in316

19

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-102
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 23 April 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 6: The 99% quantile of windstorm footprint wind gust speeds (ms1) at land

locations in Europe, used as the threshold above which windstorm conceptual insured

losses occur.

excess of the commonly used 20ms−1 loss threshold for most land locations in Europe,317

with a higher loss threshold used in regions where stronger winds occur. Hence, we define318

our bivariate conceptual loss function for the pair (X, Y ) as,319

L(X, Y ) = H(X − x0.99) +H(Y − y0.99),

where H(m) is a Heaviside function: H(m) = 1 if m > 0 and H(m) = 0 otherwise.320

Hence, for a given pair of locations the conceptual loss can take the values 0, 1 or 2321

depending on the joint exceedance of X and Y above their respective 99% quantiles, x0.99322

and y0.99, equivalent to falling within the four sections in Fig. 2.323

The probability mass function of the conceptual loss function can easily be obtained324

by considering the joint probability of (X, Y ) in each of the quadrants shown in Fig. 2:325
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Pr(L(X, Y ) = 2) = χ(p)p,

Pr(L(X, Y ) = 1) = 2(1− χ(p))p,

Pr(L(X, Y ) = 0) = 1 + p(χ(p)− 2).

From this, it is straightforward to derive the following 1st and 2nd moments:326

E(L(X, Y )) = 2χ(p)p+ 2(1− χ(p))p = 2p,

E(L(X, Y )|L(X) = 1) = 2χ(p)p+ (1− χ(p))p = p(χ(p) + 1), (5)

Var(L(X, Y )) = 2(1 + χ(p))p− 4p2 = 2p(1 + 2χ(p)− 2p).

Although the expected loss does not depend on χ(p), the conditional expectation and the327

variance of loss both depend on χ(p) as well as the marginal probability of exceedance p.328

The conditional expectation and the variance increase considerably as χ goes from 0 to329

1.330

We will now illustrate this by comparison of different extremal dependence class mod-331

els. For London paired with each land location (grid cell) in Europe, we fit both the332

Gumbel and Gaussian copula dependence models, and explore how well these two models333

represent empirical conceptual losses. This is done in two ways.334

Firstly by comparing the empirical, Gaussian and Gumbel estimates for χ(p) and χ̄(p)335

for p = 0.01 (Table 1), i.e. representing measures of the conditional probability of a loss336

occurring in Y (e.g. Amsterdam), given a loss has occurred in X (e.g. London), shown337

in Fig. 7. Secondly, as presented in Fig. 8, by comparing the distribution, for all land338

locations in the European domain, of the expected conditional joint loss with London,339

given a loss has occurred in London (Eqn. 5), again calculated empirically and using the340
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Figure 7: (a)/(b) Empirical, (c)/(d) Gaussian, and (e)/(f) Gumbel estimates of

χ(0.01)/χ̄(0.01), representing measures of the conditional probability of a conceptual

loss occurring at each land location in the European domain, given a conceptual loss has

occurred in London.

two apposing dependence models.341

Figure 7 identifies a large over estimation in both χ(0.01) and χ̄(0.01) for the Gumbel342

dependence model, when compared with the empirical estimates, due to a misspecifica-343

tion of asymptotic dependence between locations. The Gaussian model, on the other344

hand, which correctly represents the identified asymptotic independence between loca-345

tions, provides a good representation of the empirical conditional loss measures, with346

the spatial range of χ(0.01) >0 and areas of positive and negative χ̄(0.01) in general347
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Figure 8: For all land locations in the European domain, the expected conditional joint

loss with London, given a loss has occurred in London (Eqn. 5), calculated empirically

and using the Gaussian and Gumbel copula models.

agreement with the empirical values.348

Figure 8, further illustrate the importance of correctly specifying extremal dependence349

class when representing loss. When a conceptual loss occurs in London, the Gumbel350

dependence model over estimates the expected conditional joint loss with other European351

land locations, while conversely, the Gaussian model provides a very good estimate of the352

empirical expected conditional joint loss distribution.353

5 Conclusion354

This study has shown how to explore and identify extremal dependence in hazard fields355

using extremal dependence coefficients, χ(p) and χ̄(p), and estimates of the tail depen-356
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dence parameter Ledford and Tawn (1996). These measures have been compared to what357

one would expect from Gaussian and Gumbel copulas.358

These methods have revealed strong evidence of asymptotic independence in wind-359

storm footprint hazard fields, contrary to what has been assumed in previous studies360

such as Bonazzi et al. (2012). A reason for this lack of asymptotic dependency has been361

proposed based on arguments from turbulence theory. It is shown that mis-specification362

of the dependency (e.g. by using a Gumbel copula) leads to severe over-estimation of the363

probability of joint losses.364

These results provide justification that spatial representation and simulation of wind-365

storm hazard fields can be represented by a Gaussian geostatistical model, such as that366

developed in Chapter 5 of Dawkins (2016), rather than a max-stable, asymptotically367

dependent model.368
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Table 1: Empirical and Parametric forms for extremal dependence measures χ(p) and

χ̄(p).

χ(p) χ̄(p)

Empirical a
a+c

2 log(a+c)/n
log(a/n)

− 1

Power Law 1
n

exp
(
α
η

)
p

1
η
−1 2 log(p)

log( 1
n

exp(αη ))+ 1
η

log(p)
− 1

Gumbel ∼ 2− (2 log(1−p)r) 1
r

log(1−p) = 2−2
1
r (Coles

et al., 1999)

2 log(p)
log(2p(1−p)2)

− 1

Gaussian F̄ (1− p, 1− p)/p, 2 log(p)

log(F̄ (1−p,1−p)) − 1

where F̄ (1 − p, 1 − p) = Pr(X >

x1−p, Y > y1−p) ∼ (1 + ρ)
3
2 (1 −

ρ)
1
2 (4π)−

ρ
1+ρ (− log(p))

ρ
1+ρp

2
1+ρ as

p→ 0 (Coles et al., 1999)
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