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Identifying rainfall-runoff events in discharge time series:  

A data-driven method based on Information Theory 

Abstract. In this study, we propose a data-driven approach to automatically identify rainfall-runoff events in discharge time 

series. The core of the concept is to construct and apply discrete multivariate probability distributions to obtain probabilistic 

predictions of each time step being part of an event. The approach permits any data to serve as predictors, and it is non-

parametric in the sense that it can handle any kind of relation between the predictor(s) and the target. Each choice of a 

particular predictor data set is equivalent to formulating a model hypothesis. Among competing models, the best is found by 10 

comparing their predictive power in a training data set with user-classified events. For evaluation, we use measures from 

Information Theory such as Shannon Entropy and Conditional Entropy to select the best predictors and models and, 

additionally, measure the risk of overfitting via Cross Entropy and Kullback-Leibler Divergence. As all these measures are 

expressed in “bit”, we can combine them to identify models with the best tradeoff between predictive power and robustness 

given the available data. 15 

We applied the method to data from the Dornbirnerach catchment in Austria distinguishing three different model types: 

Models relying on discharge data, models using both discharge and precipitation data, and recursive models, i.e., models 

using their own predictions of a previous time step as an additional predictor. In the case study, the additional use of 

precipitation reduced predictive uncertainty only by a small amount, likely because the information provided by precipitation 

is already contained in the discharge data. More generally, we found that the robustness of a model quickly dropped with the 20 

increase in the number of predictors used (an effect well known as the Curse of Dimensionality), such that in the end, the 

best model was a recursive one applying four predictors (three standard and one recursive): discharge from two distinct time 

steps, the relative magnitude of discharge in a 65-hour time window and event predictions from the previous time step. 

Applying the model reduced the uncertainty about event classification by 77.8 %, decreasing Conditional Entropy from 

0.516 to 0.114 bits. 25 

Given enough data to build data-driven models, their potential lies in the way they learn and exploit relations between data 

unconstrained by functional or parametric assumptions and choices. And, beyond that, the use of these models to reproduce a 

hydrologist's way to identify rainfall-runoff events is just one of many potential applications. 
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1 Introduction 

Discharge time series are essential for various activities in Hydrology and Water resources management. In the words of 

Chow (1988) “[…] the hydrograph is an integral expression of the physiographic and climatic that govern the relations 

between rainfall and runoff of a particular drainage basin”. Discharge time series are a fundamental component of 

hydrological learning and prediction since they i) are relatively easy-to-obtain, ii) carry robust and integral information about 5 

the catchment state, iii) are an important target quantity for hydrological prediction and decision-making, and iv) are 

available from widespread and long-existing observation networks.  

Beyond their value to provide long-term averages aiding water balance considerations, the information they contain about 

limited periods of elevated discharge can be exploited for baseflow separation, water power planning, sizing of reservoirs 

and retention ponds, design of hydraulic structures such as bridges, dams or urban storm drainage systems, risk assessment 10 

of floods and soil erosion. These periods, essentially characterized by a rising (start), peak and recession (ending) points 

(Mei and Anagnostou, 2015), will hereafter simply be referred to as “events”. They can have many causes (rainfall, 

snowmelt, upstream reservoir operation, etc.) and equally many characteristic durations, magnitudes, and shapes. 

Interestingly, while for a trained hydrologist with a particular purpose in mind, it is usually straightforward to identify such 

events in a time series, it is hard to identify them automatically based on a set of rigid criteria. One reason for this is that the 15 

set of criteria for discerning events from non-events typically comprises both global and local aspects, i.e., some aspects 

relate to properties of the entire time series, some to properties in time windows. And to make things worse, the relative 

importance of these criteria can vary over time, and they strongly depend on user-requirements, hydroclimate and catchment 

properties. 

So why not stick to manual event detection? Its obvious drawbacks are that it is cumbersome, subject to handling errors and 20 

hard to reproduce especially when working with long-term data. As a consequence, many methods for objective and 

automatized event detection have been suggested. Ehret and Zehe (2011) and Seibert et al. (2016) applied a simple discharge 

threshold approach with partly unsatisfactory results; Merz et al. (2006) introduced an iterative approach for event 

identification based on the comparison of direct runoff and a threshold. Merz and Blöschl (2009) expanded the concept to 

analyze runoff coefficients and applied it to a large set of catchments. Blume et al. (2007) developed the “Constant-k” 25 

method for baseflow separation employing a gradient-based search for the end of event discharge. Koskelo et al. (2012) 

presented the physically-based “Sliding Average with Rain Record” - SARR - method for baseflow separation in small 

watersheds based on precipitation and quickflow response. Mei and Anagnostou (2015) suggested a physically-based 

approach for combined event detection and baseflow separation, which provides event start, peak, and end times. 

While all of these methods have the advantage of being objective and automatable, they suffer from limited generality. The 30 

reason is that each of them contains some kind of conceptualized, fixed relation between input and output. Even though this 

relation can be customized to a particular application by adapting parameters, it remains to a certain degree invariant. In 
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particular, each method requires an invariant set of input data and sometimes it is constrained to a specific scale, which limits 

its application to specific cases and to where these data are available.  

With the rapidly increasing availability of observation data, computer storage, and processing power, data-based models 

have become increasingly popular as an addition or alternative to established modeling approaches in Hydrology and 

Hydraulics (Solomatine and Osfeld, 2009). According to Solomatine and Osfeld (2008, 2009), they have the advantage of 5 

not requiring detailed consideration of physical processes (or any kind of a priori known relation between model input and 

output); instead, they infer these relations from data, which however requires that there are enough data to learn from. Of 

course, including a priori known relations among data into models is an advantage as long as we can assure that they really 

apply. However, when facing undetermined problems, i.e., for cases where system configuration, initial and boundary 

conditions are not well known, applying these relations may be over-constraining, which may lead to biased and/or 10 

overconfident predictions. Predictions based on data-driven models are less bias-prone, and neither over- nor underconfident, 

at least if appropriate binning choices were made and the application remains within the domain of the data used for 

learning. We suggest that event detection is a good example of such an underdetermined problem, and hence that a data-

based approach might be conducive to capture and reproduce a hydrologist's way of event identification. 

In the context of data-based modeling in Hydrology, concepts and measures from Information Theory are becoming 15 

increasingly popular to describe and infer relations among data (Liu et al., 2016), quantify uncertainty and evaluate model 

performance (Chapman, 1986; Liu et al., 2016), estimate information flows (Weijs, 2011; Darscheid, 2017), analyze spatio–

temporal variability of precipitation data (Mishra et al., 2009; Brunsell, 2010), describe catchment flow (Pechlivanidis et al., 

2016), and measure quantity and quality of information in hydrological models (Nearing and Gupta, 2015).  

In this study, we describe and test a data-driven approach for event detection formulated in terms of Information Theory. The 20 

method is presented in Section 2. In Section 3, we describe a test application with data from the Dornbirnerach catchment in 

Austria. We present the results in Section 4 and draw conclusions in Section 5. 

2 Method description 

The core of the method is straightforward and generally applicable; its main steps are shown in Fig. 1 and will be explained 

in the following.  25 

2.1 Model hypothesis step 

The process starts by selecting the target (what we want to predict) and the predictor data (that potentially contain 

information about the target). Choosing the predictors constitutes the first and most important model hypothesis, and there 

are almost no restrictions to this choice: They can be any kind of observational or other data, transformed by the user or not; 

they can be part of the target data set themselves, e.g., time-lagged or space-shifted; they can even be the output of another 30 

model. The second choice and model hypothesis is the mapping between items in the target and the predictor data set, i.e., 
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the relation hypothesis. It is important for the later construction of conditional histograms that a 1:1 mapping exists between 

target and predictor data. Often, the mapping relation is established by equality in time. 

2.2 Model building step 

The next step is the first part of model building. It consists of choosing the value range and binning strategy for target and 

predictor data. These choices are important as they will frame the estimated multivariate probability mass functions (PMFs) 5 

constituting the model and directly influence the statistics we compute from them for evaluation. Generally, these choices 

are subjective and reflect user-specific requirements and should be made taking into consideration data precision and 

distribution, size of the available data sets and required resolution of the output. According to Gong et al. (2014), when 

constructing probability density functions (PDFs) from data via the simple bin-counting method, “[…] too small a bin width 

may lead to a histogram that is too rough an approximation of the underlying distribution, while an overly large bin width 10 

may result in a histogram that is overly smooth compared to the true PDF.”. Gong et al. (2014) also discussed the selection 

of an optimal bin width by balancing bias and variance of PDF estimation. Pechlivanidis et al. (2016) investigated the effect 

of bin resolution on the calculation of Shannon Entropy and recommended that bin width should not be less than the 

precision of the data. Also, while equidistant bins have the advantage of being simple and computationally efficient (Ruddell 

and Kumar 2009), hybrid alternatives can overcome weaknesses of conventional binning methods to achieve a better 15 

representation of the full range of data (Pechlivanidis et al., 2016).  

With the binning strategy fixed, the last part of the model building is to construct a multivariate PMF from all predictors and 

related target data. The PMF dimension equals the number of predictors plus one (the target), and the way probability mass 

is distributed within is a direct representation of the nature and strength of the relationship between predictors and target as 

contained in the data. Application of this kind of model for a given set of predictor values is straightforward: We simply 20 

extract the related conditional PMF (or PDF) of the target, which, under the assumption of system stationarity, is a 

probabilistic prediction of the target value.  

2.3 Model evaluation step 

2.3.1 Information Theory – Measures  

In order to evaluate the usefulness of a model, we apply concepts from Information Theory to select the predictors and 25 

validate the model. With this in view, this section provides a brief description of the Information Theory concepts and 

measures applied in this study. The section is based on Cover and Thomas (2006), which we recommend for a more detailed 

introduction to the concepts of Information Theory. Complementary, for specific applications to investigate hydrological 

data series, we refer the reader to Darscheid (2017). 

Entropy can be seen as a measure of the uncertainty about a random variable; it is a measure of the amount of information 30 

required on average to describe a random variable (Cover and Thomas, 2006). Let 𝑋 be a discrete random variable with 
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alphabet 𝜒 and probability mass function 𝑝(𝑥), 𝑥 ∈  𝜒. Then, the Shannon Entropy H(𝑋) of a discrete random variable 𝑋 is 

defined by 

H(𝑋) =  − ∑ 𝑝(𝑥) log2 𝑝(𝑥)

𝑥 ∈ 𝜒

 (1) 

If the logarithm is taken to base two, an intuitive interpretation of Entropy is: “Given prior knowledge of a distribution, how 

many binary (Yes/No) questions need to be asked on average until a value randomly drawn from this distribution is 

identified?”. 5 

We can describe the Conditional Entropy as the Shannon Entropy of a random variable conditional on the (prior) knowledge 

of another random variable. The Conditional Entropy H(𝑋|𝑌) of a pair of discrete random variables (𝑋, 𝑌) is defined as 

H(𝑋|𝑌) =  − ∑ 𝑝(𝑦) ∑ 𝑝(𝑥|𝑦).

𝑥 ∈ χ 

log2 𝑝(𝑥|𝑦)

𝑦 ∈Υ

 (2) 

The reduction in uncertainty due to another random variable is called the Mutual Information 𝐼(𝑋, 𝑌), which is equal to 

𝐻(𝑋) − 𝐻(𝑋|𝑌). In the study, both measures, Shannon Entropy and Conditional Entropy, are used to quantify the 

uncertainty of the models (uni- and multivariate probability distributions). The first is calculated as reference and measures 10 

the uncertainty of the target data set. The latter is applied to the probability distributions of the target conditional on 

predictor(s), and it corroborates to select the best predictors, i.e., the ones which lead to the most significant reduction of 

uncertainty about the target.  

It is also possible to compare two probability distributions 𝑝 and 𝑞 over the same underlying set of events. For measuring the 

statistical “distance” between the distributions 𝑝 and 𝑞, it is common to use Relative Entropy or Kullback-Leibler 15 

Divergence 𝐷KL(𝑝||𝑞), which is defined as 

DKL(𝑝||𝑞) = ∑ 𝑝(𝑥) log2

𝑝(𝑥)

𝑞(𝑥)
𝑥 ∈ χ

 (3) 

The Kullback-Leibler Divergence is also a measure of the inefficiency of assuming that the distribution is 𝑞 when the true 

distribution is 𝑝 (Cover and Thomas, 2006). The Shannon Entropy H(𝑝) of the true distribution 𝑝 plus the Kullback-Leibler 

Divergence DKL(𝑝||𝑞) of 𝑝 with respect to 𝑞 is called Cross Entropy Hpq. In the study, we use these related measures to 

validate the models and to avoid overfitting, by measuring the additional uncertainty of a model if it is not based on the full 20 

data set 𝑝 but only a sample 𝑞 thereof. 

Note that the uncertainty measured by Eq. (1) to Eq. (3) depends only on event probabilities, not on their values. This is 

convenient as it allows joint treatment of many different sources and types of data in a single framework.  

2.3.2 Information Theory – Model evaluation  

As a benchmark, we can start with the case where no predictor is available, but only the unconditional probability 25 

distribution of the target is known. As seen, the associated predictive uncertainty can be measured by the Shannon Entropy 
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H(𝑋) of the distribution (here 𝑋 indicates the target). If we introduce a predictor and know its value in a particular situation a 

priori, predictive uncertainty is the entropy of the conditional probability function of the target given the particular predictor 

value. Conditional Entropy H(𝑋|𝑌), where 𝑌 indicates the predictor(s), is then simply the probability-weighted sum of 

entropies of all conditional PMFs. Mutual information I(𝑋, 𝑌)) is the difference between Shannon Entropy and Conditional 

Entropy and, like Conditional Entropy, is a generic measure of statistical dependence between variables (Sharma and 5 

Mehrotra, 2014), which we can use to compare competing model hypotheses and select the best among them.  

Obviously, advantages of setting up data-driven models in the described way are that it involves very few assumptions and it 

is straightforward to formulate a large number of alternative model hypotheses. However, there is an important aspect we 

need to consider: from the information inequality, we know that Conditional Entropy is always less than or equal to the 

Shannon Entropy of the target (Cover and Thomas, 2006). In other words, “information never hurts”, and consequently 10 

adding more predictors will always either improve or at the least not worsen results. In the extreme, given enough predictors 

and applying a very refined binning scheme, a model can potentially yield perfect predictions if applied to the learning data 

set. However, besides the higher computational effort, in this situation, the “Curse of Dimensionality” (Bellman, 1957) 

occurs, which “covers various effects and difficulties arising from the increasing number of dimensions in a mathematical 

space for which only a limited number of data points are available (Darscheid, 2017)”. This means that with each predictor 15 

added to the model, the dimension of the conditional target-predictor PMF will increase by one, but its volume will increase 

exponentially. For example, if the target PMF is covered by two bins and each predictor by 100, then a single, double and 

triple predictor model will consist of 200; 20 000 and 2 000 000 bins, respectively. Clearly, we will need a much larger data 

set to populate the latter PMF than the first. This also means that increasing the number of predictors for a fixed number of 

available data increases the risk of creating an overfitted/non-robust model in the sense that it will become more and more 20 

sensitive to the absence or presence of each particular data point. Models overfitted to a particular data set are less likely to 

produce good results when applied to other data sets than robust models, which capture the essentials of the data relation 

without getting lost in detail. 

We consider this effect with a resampling approach: From the available data set, we take samples of various sizes and 

construct the model from the sample (see repetition statement regarding 𝑁 in Fig. 1). Obviously, as the model was built from 25 

just a sample, it will not reflect the target-predictor relation as good as a model constructed from the entire data set. It has 

been shown (Cover and Thomas, 2006; Darscheid, 2017) that the total uncertainty of such an imperfect model is the sum of 

two components: The Conditional Entropy H(𝑋|𝑌) of the “perfect” model constructed from all data and the Kullback-

Leibler Divergence DKL between the sample-based and the perfect model. DKL measures the statistical distance between the 

two distributions, in other words, it quantifies the additional uncertainty due to the use of an imperfect model. For a given 30 

model (selection of predictors), the first summand is independent of the sample size as it is calculated from the full data set, 

but the second varies: the smaller the sample, the higher DKL. Another important aspect of DKL is that for a fixed amount of 

data, it strongly increases with the dimension of the related PMFs, i.e., it is a measure of how hard the Curse of 

Dimensionality hits. 
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In information terms, the sum of Conditional Entropy and Kullback-Leibler Divergence is referred to as Cross Entropy 

Hpq(𝑋||𝑌). A typical example of Cross Entropy as a function of sample size is, for a single model, shown in Fig. 2. For 

small sample sizes, DKL is the main contributor to total uncertainty, but when the sample approaches the size of the full data 

set, it disappears, and total uncertainty equals Conditional Entropy.  

From the shape of the curve in Fig. 2 we can also infer whether the available data are sufficient to support the model: When 5 

DKL approaches zero (Cross Entropy approaches its minimum), this indicates that the model can be robustly estimated from 

the data, or, in other words, the sample size is enough to represent the full data set. We can also do this kind of analysis in an 

objective manner by calculating the ratio DKL/H(𝑋|𝑌), which is a measure of the relative contribution of DKL to total 

uncertainty. We can then compare this ratio to a defined tolerance limit (e.g., 5 %) to find the minimally required sample 

size. 10 

We can also use these kinds of plots to select the best among competing models with different numbers of predictors. 

Typically, for small sample sizes, simple models will outperform multi-predictor models as the latter will be hit harder by 

the Curse of Dimensionality; but with increasing data availability, this effect will vanish, and models incorporating more 

sources of information will be rewarded. 

In order to reduce the effect of chance when taking random samples, we repeat the described resampling and evaluation 15 

procedure many times for each sample size (see repetition statement 𝑊 in Fig. 1) and take the average of the resulting DKL's 

and Cross Entropies. Based on these averaged results, we can identify the best model for a set of available data. 

One of the advantages of this approach is that it avoids splitting the available data set into a calibration and a validation set. 

Instead, it makes use of all available data to learn and provides measures of model performance across a range of sample 

sizes.  20 

2.4 Model application step 

Once a model has been selected, its application is straightforward: From the multivariate PMF that represents the model, we 

simply extract the conditional PMF of the target for a given set of predictor values. The model returns a probabilistic 

prediction of the target value, which is neither biased, over- or underconfident as long as the assumption of stationarity 

between the learning and the application situation is met, and appropriate binning choices were made.  25 

3 Design of a test application 

For demonstration purposes, we applied the method to a set of test data. In this section, we describe the hydro-climatic 

properties of the test data, explain which additional predictors we derived from the raw data and related binning and other 

choices, and present our strategy for model setup, classification, and evaluation. 
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3.1 Data and site properties  

We used quality-controlled hourly discharge and precipitation observations from a 9-year period (Oct/31/1996–

Nov/01/2005, 78 912 time steps). Discharge data are from gauge “Hoher Steg”, which is located at the outlet of the 113 km² 

Alpine catchment of the Dornbirnerach river in north-western Austria. Precipitation data are from station “Ebnit” located 

within the catchment. 5 

For the test period, we manually identified hydrological events by visual inspection of the discharge time series. To guide 

this process, we used a broad event definition, which can be summarized as follows: “An event is a coherent period of 

elevated discharge compared to the discharge immediately before and after, and/or a coherent period of high discharge 

compared to the data of the entire time series”. We suggest that this is a typical definition if the goal is to identify events for 

hydrological process studies such as analysis of rainfall-runoff coefficients, baseflow separation, or recession analysis. Based 10 

on this definition, we classified each time step of the time series as either being part of an event (value “1”) or not (value 

“0”). Altogether, we identified 177 individual events covering 9092 time steps, which is 11.5 % of the time series. A 

preliminary analysis revealed that all times with discharge exceeding 15.2 m³ s-1 were classified as event, all times with 

discharge below 0.287 m³ s-1 were always classified as non-event.  

Both, the input data and the event classification are shown in Fig. 3. 15 

3.2 Predictor data and binning 

Since we wanted to build and test a large range of models, we did not only apply the raw observations of discharge and 

precipitation but also derived new data sets. The target and all predictor data sets with the related binning choices are listed 

in Table 1; additionally, the predictors are explained in the text below. For reasons of comparability, we applied uniform 

binning (fixed width interval partitions) to all data used in the study, except for discharge: Here we grouped all values 20 

exceeding 15.2 m³ s-1 (the threshold beyond which an event occurred for sure) into one group to increase computational 

efficiency. For each data type, we selected the bin range to cover the range of observed data and chose the number of bins 

with the objective to maintain the overall shape of the distributions with the least number of bins.  

3.2.1 Discharge 𝑸 [m³ s-1] 

This is the discharge as measured at Hoher Steg. In order to predict an event classification at time step 𝑡, we tested discharge 25 

at the same time step as a predictor – 𝑄(𝑡) –, and at time steps before – 𝑄(𝑡 − 1), 𝑄(𝑡 − 2) – and after – 𝑄(𝑡 + 1), 𝑄(𝑡 +

2). 

3.2.2 Natural logarithm of discharge 𝐥𝐧𝑸 [ln(m³ s-1)] 

We also used a log-transform of discharge to evaluate whether this non-linear transformation preserved more information in 

𝑄 when mapped into the binning scheme than the raw values. Note that the same effect could also be achieved by a 30 
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logarithmic binning strategy, but as mentioned we decided to maintain the same binning scheme for reasons of 

comparability. As for 𝑄, we applied the log-transform also to time-shifted data. 

3.2.3 Relative magnitude of discharge 𝑸𝐑𝐌 [-] 

This is a local identifier of discharge magnitude at time 𝑡 in relation to its neighbors within a time window. For each time-

step, we normalized discharge into the range [0, 1] using Eq. (4), where 𝑄max is the largest value of 𝑄 within the window 5 

and 𝑄min is the smallest. 

QRM =  
𝑄(𝑡) − 𝑄min

𝑄max −  𝑄min

 (4) 

A value of 𝑄RM = 0 indicates that 𝑄(𝑡) is the smallest discharge within the analyzed window, a value of 𝑄RM = 1 indicates 

that it is the largest. We calculated these values for many window sizes and for windows with the time step under 

consideration in the center (𝑄RMC), at the right end (𝑄RMR) and at the left end (𝑄RML) of the window. The best results were 

obtained for a time-centered window of 65 hours. For further details see Section 3.3. 10 

3.2.4 Slope of discharge 𝑸𝐬𝐥𝐨𝐩𝐞 [m³ s-1 h-1] 

This is the local inclination of the hydrograph. This predictor was created to take into consideration the rate and direction of 

discharge changes. We calculated both the slope from the previous to the current time step applying Eq. (5) and the slope 

from the current to the next time step applying Eq. (6). Positive values always indicate rising discharge. 

Qslopebefore
=

𝑄(𝑡) − 𝑄(𝑡 − 1)

𝑡 − (𝑡 − 1)
 (5) 

Qslopeafter
=

𝑄(𝑡 + 1) − 𝑄(𝑡)

(𝑡 + 1) − 𝑡
 (6) 

3.2.5 Precipitation 𝑷 [mm h-1] 15 

This is the precipitation as measured at Ebnit. 

3.2.6 Model-based event probability 𝒆𝐩 [-] 

In general, information about a target of interest can be encoded in related data such as the predictors introduced above, but 

it can also be encoded in the ordering of data. This is the case if the processes that are shaping the target exhibit some kind of 

temporal memory or spatial coherence. For example, the chance of a particular time step to be classified as being part of an 20 

event increases if the discharge is on the rise, and it declines if the discharge declines. We can incorporate this information 

by adding to the predictors discharge from increasingly distant time steps, but this comes at the price of a rapidly increasing 

impact of the Curse of Dimensionality. To mitigate this effect, we can use sequential or recursive modeling approaches: In a 

first step, we build a model using a set of predictors and apply it to predict the target. In a next step, we use this prediction as 
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a new, model-derived predictor, combine it with other predictors in a second model, use it to make a second prediction of the 

target and so forth. Each time we map information from the multi-dimensional set of predictors onto the 1-dimensional 

model output, we compress data and reduce dimensionality while hoping to preserve most of the information contained in 

the predictors. Of course, if we apply such a recursive scheme and want to avoid iterations, we need to avoid circular 

references, i.e., the output of the first model must no depend on the output of the second. In our application, we assured this 5 

by using the output from the first model at time step 𝑡 − 1 as a predictor in the second model to make a prediction at time 

step 𝑡.  

3.3 Selecting the optimal window size for the 𝑸𝐑𝐌 predictor 

To select the most informative window size when using relative magnitude of discharge as a predictor, we calculated 

Conditional Entropy of the target given discharge and the 𝑄𝑅𝑀𝐶 , 𝑄RML  and 𝑄RMR predictors for a range of window sizes on 10 

the full data set. The definition of the window sizes for the different window types and the Conditional Entropies are shown 

in Fig. 4.  

The best (lowest) value of Conditional Entropy was obtained for a time-centered window (𝑄RMC) with 2 ∙ 32 + 1 = 65 h of 

a total width. We used this value for all further analyses.  

3.4 Model classification, selection, and evaluation 15 

3.4.1 Model classification 

All the models we set up and tested in this study can be assigned to one of three distinct groups. The groups distinguish both 

typical situations of data availability and the use of recursive and non-recursive modeling approaches. Models in the 𝑄-based 

group apply exclusively discharge-based predictor(s). For models in the 𝑃-based group, we assumed that in addition to 

discharge, precipitation data are also available. This distinction was made because in the literature exist two main groups of 20 

event detection methods: One relying solely on discharge data, the other using precipitation data additionally. Finally, 

models in the Model-based group all apply a 2-step recursive approach as discussed in Section 3.2.6. The first model is 

always from the 𝑄- or 𝑃-based group. Event predictions at time step 𝑡 − 1 of the first model are then, together with 

additional predictors from the 𝑄- or 𝑃-based group, used as a predictor in the second model. 

3.4.2 Model selection 25 

In order to streamline the model evaluation process, we applied an approach of supervised model selection and gradually 

increasing model complexity: We started by setting up and testing all possible 1-predictor models in the 𝑄- and 𝑃-based 

group. From these, we selected the best performing model and combined it with each remaining predictor into a set of 2-

predictor models. The best performing 2-predictor model was then expanded to a set of 3-predictor models using each 

remaining predictor and so forth. For the Model-based group, the strategy was to take the best-performing models from both 30 
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the 𝑄- and the 𝑃-based group as the first model and then combine it with an additional predictor as explained in Section 

3.2.6. In the end, we stopped at 4-predictor models, as beyond the uncertainty contribution due to limited sample size 

became dominant. 

3.4.3 Model evaluation 

Among models with the same number of predictors, we compared model performance via the Conditional Entropy (target 5 

given the predictors), calculated from the full data set. However, when comparing models with different numbers of 

predictors, the influence of the Curse of Dimensionality needs to be taken into account. To this end, we calculated sample-

based Cross Entropy and Kullback-Leibler Divergence as described in Section 2 for samples of size fifty up to the size of the 

full data set, using the following sizes [50; 100; 500; 1000; 1500; 2000; 2500; 5000; 7500; 10 000; 15 000; 20 000; 30 000; 

40 000; 50 000; 60 000; 70 000; 78 912]. To eliminate effects of chance, we repeated the resampling 500 times for each 10 

sample size and took their averages. In Appendix A, the resampling strategy and the choice of repetitions are discussed in 

more detail. 

4 Results and discussion 

4.1 Model performance for the full data set 

Here we present and discuss the model results when applied to the complete data set. As we stick to the complete data set, 15 

Kullback-Leibler divergence will always be zero, and model performance can be fully expressed by Conditional Entropy 

(see Section 3.4.3), with the (unconditional) Shannon Entropy of the target data H(𝑒) = 0.516 bits as an upper limit, which 

we use as a reference to calculate the relative uncertainty reduction for each model. In Table 2, Conditional Entropies and 

their relative uncertainty reductions are shown for each 𝑄- and 𝑃-based 1-predictor model. 

1-predictor models based on 𝑄 and ln𝑄 reduced uncertainty to about 50 % (models #1-10 in Table 2, column 4), with a slight 20 

advantage of 𝑄 over ln𝑄. Interestingly, both show their best results for time offset 𝑡 + 2, i.e., future discharge is a better 

predictor for event detection than discharge at the current time step. As we were not sure whether this also applies to 2-

predictor models, we decided to test both the 𝑡 + 2 and 𝑡 predictors of 𝑄 and ln𝑄 in the next step. Compared to 𝑄 and ln𝑄, 

relative magnitude of discharge 𝑄RMC and discharge slope 𝑄slope performed poorly, and so did P, the only model in the 𝑃-

based group. Most likely this is because for a certain time step, to be part of an event is not so much dependent on 25 

precipitation at this particular time step, but rather on the accumulated rainfall in a period preceding it. Despite its poor 

performance, we decided to use it in higher-order models to see whether it becomes more informative in combination with 

other predictors. 

Based on these considerations and the model selection strategy described in Section 3.4.2, we built and evaluated all possible 

2-predictor models. The models and results are shown in Table 3. 30 
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As could be expected from the information inequality, adding a predictor improved the results, and for some models (#16 

and #20), the 𝑡-predictors outperformed their 𝑡 + 2 counterparts (#17 and #21, respectively). Once more, 𝑄 predictors 

performed slightly better than ln𝑄, such that for all higher-order models, we only used 𝑄(𝑡) and ignored 𝑄(𝑡 + 2), ln𝑄(𝑡) 

and ln𝑄(𝑡 + 2). 

In the 𝑃-based group, adding any predictor greatly improved results by about 50 %, but not a single P-based model 5 

outperformed even the worst from the 𝑄-based group. 

Finally, from both the 𝑄- and 𝑃-based group, we selected the best model (#16 and #23, respectively) and extended them to 3-

predictor models with the remaining predictors. The models and results are shown in Table 4. 

Again, for both models, the added predictor improved results considerably, and we used both of them to build a recursive 4-

predictor model as described in Section 3.4. The new predictor, 𝑒p(𝑡 − 1) is simply the probabilistic prediction of a model 10 

(#27 or #28, in this case) for time step 𝑡 − 1 of being part of an event, with value range [0, 1]. This means 𝑒p#27
(𝑡 − 1) 

carries the memory from the previous predictions of model #27 (and 𝑒p#28
(𝑡 − 1) from model #28, accordingly), and the 

new 4-predictor models #29 and #30 as shown in Table 5 are simply copies of these models, extended by a memory term: 

𝑒p(𝑡 − 1). 

Again, model performance improved, and model #29 was the best among all tested models. Though, so far the effect of 15 

sample size was not considered, which might have a strong impact on the model rankings. This is investigated in the next 

section. 

4.2 Model performance for samples 

The sample-based model analysis is computationally expensive, so we restricted these tests to a subset of the models from 

the previous section. Our selection criteria were to i) include at least one model from each predictor group, ii) include at least 20 

one model from each dimension of predictors, iii) choose the best performing model. Altogether we selected the seven 

models shown in Table 6. Please note that despite our selection criteria, we ignored the 1-predictor model using precipitation 

due to its poor performance. 

For these models, we computed the Cross Entropies between the full data set and each sample size 𝑁 and in the end took 

their average thereof. This was done separately for each sample size. The results are shown in Fig. 5. For comparison, the 25 

Cross Entropies between the target data set and samples thereof are also included and labeled as model #0.  

In Fig. 5, the Cross Entropies at the right end of the x-axis, where the sample contains the entire data set, equal the 

Conditional Entropies, as the effect of sample size is zero. However, with decreasing sample size, Cross Entropy grows in a 

non-linear fashion as DKL starts to grow. If we walk through the space of sample sizes in the opposite direction, i.e., from left 

to right, we can see that as the samples grow, the rate of change of Cross Entropy decreases, the reason being that the rate of 30 

change of DKL decreases, which means that the model learns less and less from new data points. Thus, by visually exploring 

these “learning curves” of the models we can make two important statements related to the amount of data required to inform 
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a particular model: We can state how large a training data set should be to sufficiently inform a model, and we can compare 

this size to the size of the actually available data set. If the first is much smaller than the latter, we gain confidence that we 

have a well-informed, robust model. If not, we know that it may be beneficial to gather more data, and if this is not possible, 

we should treat model predictions with caution. 

In the 𝑃-based group and for sample sizes smaller 5000, the 1-predictor model #23 performs best, but for larger samples 5 

sizes, the 4-predictor model #30 takes the lead. Likewise, in the 𝑄-based group and for sample sizes smaller than 2500, the 

single-predictor model #3 is the best but is outperformed by the 2-predictor model #16 from 2500 until 10 000, which in turn 

is outperformed by the 4-predictor model #29 from 10 000 to the end. Across all groups, models #3, #16 and #29 form the 

lower envelope curve in Fig. 5, which means that one of them is always the best model choice, depending on the sample size.  

Interestingly, the best performing model for large sample sizes (#29) includes predictors which reflect the definition criteria 10 

that guided manual event detection (Section 3.1): 𝑄(𝑡) and 𝑄(𝑡 + 2) contain information about the absolute magnitude of 

discharge, 𝑄RMC expresses the magnitude of discharge relative to its vicinity, and 𝑒p#27
(𝑡 − 1) relates to the requirement of 

events to be coherent.  

We also investigated the contribution of sample-size effects to total uncertainty by analyzing the ratio of DKL and H(𝑋|𝑌) as 

described in Section 2.3. In Fig. 6, these ratios are shown as a function of sample size for each model. 15 

The values in Fig. 6 are given as percentages, e.g., a value of 200 % means that the contribution of sample-size effects to 

total uncertainty is twice as high as the contribution from Conditional Entropy of the full data set. As expected, for all 

models these percentages decrease with increasing sample size, but the absolute values and the rate of change strongly differ. 

For the 1-predictor model #3, DKL contribution is small already for small sample sizes, and it quickly drops to almost zero 

with increasing sample size. For multi-predictor models such as #29, DKL contribution to uncertainty exceeds that of H(𝑋|𝑌) 20 

by a factor of six for small samples, and it decreases only slowly with increasing sample size. 

In Table 7, we show for each model the minimum sample size to keep the DKL contribution below a threshold of 5 %.  

As expected, the models with few predictors require only small samples to meet the 5 % requirement, but for multi-predictor 

models such as models #29 and #30, more than 60 000 data points are required. This happens because the greater the number 

of predictors, the greater is the number of bins in the model. This means that we need a much larger data set to populate the 25 

PMF with the largest number of bins, for example: model #29 has 279 752 bins and requests 7.9 years of data). Considering 

that the amount of data available in the study is limited, this also means that increasing the number of predictors/bins, the 

risk of creating an overfitted/non-robust model also increases. Thus, the ratio DKL/H(𝑋|𝑌) and visual inspection of the curve 

in Fig. 5 orientate the user when to stop adding new predictors to avoid overfitting. In this fashion, Table 7 shows that each 

of the models tested meets the 5 % requirement, claiming up to 87 % of the available data set (69 102 out of 78 912 data 30 

points for model #29), which indicates that all of them are robustly supported by the data. In this case, we can confidently 

choose the best-performing among them (#29) for further use.  
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4.3 Model application 

In the previous sections, we developed and compared a range of models to reproduce subjective, manual identification of 

events in a discharge time series. Given the available data, the best model was a 4-predictor recursive model applying 𝑄(𝑡), 

𝑄RMC, 𝑄(𝑡 + 2), and 𝑒p(𝑡 − 1) as predictors (#29). This model reduced the initial predictive uncertainty by 77.8 %, 

decreasing Conditional Entropy from 0.516 to 0.114 bits. This sounds reasonable, but what do the model predictions actually 5 

look like? As an illustration, we applied the model to a subset of the training data, April 26 to June 21, 2001. For this period, 

the observed discharge, the manual event classification by the user and the model-based prediction of event probability are 

shown in Fig. 7. 

In the period from June 1 to 21, four distinct rainfall-runoff events occurred which were also classified as such by the user. 

During these events, the model-based predictions for event probability remained consistently high except for some times at 10 

the beginning and end of events, or in times of low flow during an event. Obviously, the model here agrees with the user 

classification, and if we wished to obtain a binary classification from the model, we could get it by introducing an 

appropriate probability threshold (e.g. 75 %). 

Things look differently, though, in the period of April 26 to May 10, when snowmelt induced diurnal discharge patterns. 

During this time, the model identified several periods with reasonable (above 50 %) event probability, but the user classified 15 

none. Arguably, this is a difficult case for both manual and automated classification, as the overall discharge is elevated, but 

not much, and diurnal events can be distinguished, but are not pronounced. In such cases, both the user-based and the model-

based classification are uncertain and may disagree. 

5 Conclusions 

Typically, for a user with a specific purpose and a particular discharge time series, it is easy to manually identify rainfall-20 

runoff events, due to the high discriminative and integrative power of the brain-eye system. However, this is i) cumbersome 

for long time series, ii) subject to handling errors and iii) hard to reproduce since it dependents on acuity and knowledge of 

the event identifier. To mitigate these issues, this study has proposed an Information Theory approach to learn from data, and 

to choose the best predictors, via uncertainty reduction, to create predictive models for automatically identifying rainfall-

runoff events in discharge time series.  25 

The method was established in four main steps: model hypothesis, building, evaluation, and application. Each association of 

predictor(s) to the target is equivalent to formulating a model hypothesis. For the model building, non-parametric models 

were constructing discrete distributions via bin-counting. To proceed with the rainfall-runoff event identification, the 

predictive model required at least a discharge time series, and a training data set containing a Yes/No event identification as 

a target. In the evaluation step, we used Shannon Entropy and Conditional Entropy to select the best predictors, and 30 

Kullback-Leibler Divergence and Cross Entropy to analyze the model in terms of overfitting and Curse of Dimensionality. 

Finally, the best model was applied to its original data set to compare the predictability of the events.  
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The approach was applied to discharge and precipitation data from the Dornbirnerach catchment in Austria. In this case 

study, 30 models based on 14 predictors were built and tested. Among these, seven predictive models with a number of 

predictors varying from one to four were selected: four models built purely arising from discharge-based predictor(s) and 

three from discharge and precipitation data, of which one in each group was a recursive model, i.e., they used their own 

predictions of a previous time step as an additional predictor. Interestingly, across these models, the three best performing 5 

ones were obtained using only discharge-based predictors. The overall best model was a recursive one applying four 

predictors: discharge from two different time steps, the relative magnitude of discharge in a 65-hour time window and event 

predictions from the previous time step. Applying the best model, the uncertainty about event classification was reduced by 

77.8 %, decreasing Conditional Entropy from 0.516 to 0.114 bits. Since the Conditional Entropy reduction of the models 

with precipitation was not higher than the ones exclusively based on discharge information, it was possible to infer that: i) 10 

the information coming from precipitation was likely already contained in the discharge data series, and ii) the event 

classification is not so much dependent on precipitation at a particular time step, but rather on the accumulated rainfall in the 

period preceding it.  

A robustness analysis using Cross Entropy and Kullback-Leibler Divergence showed that the robustness of a model quickly 

dropped with the number of predictors used (an effect known as the Curse of Dimensionality) and that the relation between 15 

number of predictors and sample size was crucial to avoid overfitting. Thus, the model choice is a tradeoff between 

predictive power and robustness given the available data. For our case, the minimum amount of data to build a robust model 

varied from 9952 data points (1-predictor model with 0.260 bits of uncertainty) to 69 102 data points (4-predictor model with 

0.114 bits of uncertainty).  

Since a rainfall runoff event does not have a clear definition, and its identification is dependent on the catchment and the 20 

user's interest, the final objective of the predictive model was to reproduce the users' Yes/No event decision in a probabilistic 

manner for application to further data sets. Considering the subjectivity of the event classification process and the high 

dependence of the user's background knowledge, a learning-from-data approach was applied to understand and replicate the 

user event classification. We used measures from Information Theory to quantify the minimum amount of data needed to 

build a robust model, or to choose the most suitable model for an available data set. The resulting automatic event 25 

classification also provides a probabilistic event prediction, which compared to a binary classification additionally provides a 

measure of the confidence of the classification. 

The data-driven approach based on Information Theory presents advantages such as: i) It is a general method that involves a 

minimum of additional assumptions or parametrizations; ii) Due to its non-parametric approach, it preserves as much as 

possible the full information of the data, which might get lost when expressing the data-relations by functional relationships; 30 

iii) It obtains data-relations from the data itself; iv) It allows to measure the amount of uncertainty reduction via predictors; 

v) It is a direct way to account for uncertainty; vi) It permits explicitly comparing information from various sources in a 

single currency, “bit”; vii) It allows to quantify minimal data requirements; viii) It enables to investigate the Curse of 

Dimensionality. Although the procedure was employed to identify events from a discharge time series, which for our case 
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were mainly triggered by rainfall and snowmelt, the method can be applied to reproduce user classification of any kind of 

event (rainfall, snowmelt, upstream reservoir operation, etc.) and even identify them separately. Moreover, the approach 

permits any data to serve as predictors, and it can handle any kind of relation between the predictor(s) and the target. Thus, 

the proposed approach can be conveniently adapted to another practical application. 

6 Data availability 5 

The Event Detection program, containing the functions to develop multivariate histograms and calculate Information Theory 

measures, is published alongside this manuscript via GitHub https://github.com/KIT-HYD/EventDetection. The repository 

also includes scripts to exemplify the use of the functions, and the data set of identified event, discharge and precipitation 

time series from the Dornbirnerach catchment in Austria used in the case study. 

7 Author contribution 10 

UE and PD developed the model program (calculation of Information Theory measures, multivariate histograms operations, 

event detection) and developed a method to avoid infinity large values of DKL (Darscheid, Guthke and Ehret, 2018). ST 

performed the simulations and the validation of the number of repetitions of the resampling stage. ST and UE directly 

contributed to the design of the method and test application, to the analysis of the performed simulations, and wrote the 

manuscript.  15 
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Appendix A: Resampling strategy and number of repetition 20 

In the study, samples of size 𝑁 from the data set were obtained through bootstrapping, i.e., they were taken randomly, but 

continuously in time, with replacement among the 𝑊 repetitions. For each sample size, we repeated draws 𝑊 times and took 

the average Cross Entropy and DKL to eliminate effects of chance (see repetition statements 𝑁 and 𝑊 in Fig. 1). 

Thus, in order to find the value of 𝑊 which balances statistical accuracy and computational efforts, we did a dispersion 

analysis through calculating the Shannon Entropy (as a measure of dispersion) of the Cross Entropy distribution of the 25 

(unconditional) target model (without predictors, model #0 in Table 7). Sixty one bins ranging from 0 to 6 in steps of 0.1 bits 

were used, which contemplates the range of all possible Cross Entropy values among the tested pairs of 𝑁 and 𝑊. Fig. A1 
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presents the Shannon Entropy applied as a dispersion parameter to analyze the effect of the number of repetitions 𝑊 for 

different sample sizes 𝑁.  

Considering the graph in Fig. A1, in general, the behavior of the Shannon Entropy among the repetitions is similar for each 

sample size analyzed, indicating the dispersion of the results according to the number of repetitions does not vary too much, 

i.e., the bins are similarly filled. However, it is possible to see that, as the sample size increases, the Shannon Entropy for the 5 

different number of repetitions approaches that for the 50 000 repetitions. For sample sizes up to 7500, the bars from 50, 100 

and 300 repetitions present some peaks and troughs, indicating some dispersion in filling the bins. Thus, in this case study, 

the minimum of 500 repetitions was assumed as a reasonable number of repetitions to compute the mean of the Cross 

Entropy in the sample size investigation. This number of repetitions was also validated considering the smoothness and 

logical behavior of the curves obtained during the data size validation and Curse of Dimensionality analyzes (Fig. 5 in 10 

Section 4.2). 
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Table 1: Target and predictors – Characterization and binning strategy. 

Target (𝑿) Symbol Unit 
Bins*  

[start:end] 

Number 

of bins 

User-based event classification 

at time 𝑡 
e [-] [0:1]  2 

Predictors (𝒀) Symbol Unit 
Bins* 

[start:step:end] & [start:end] 

Number 

of bins 

Discharge at times 𝑡-2, 𝑡-1, 𝑡, 

𝑡+1, 𝑡+2 

𝑄(𝑡-2), 𝑄(𝑡-1), 𝑄(𝑡), 
𝑄(𝑡+1), 𝑄(𝑡+2) 

[m³ s-1] [0:0.5:16] & [16:end] 34 

Natural logarithm of discharge 

at times 𝑡-2, 𝑡-1, 𝑡, 𝑡+1, 𝑡+2 

ln𝑄(𝑡-2), ln𝑄(𝑡-1), 
ln𝑄(𝑡), ln𝑄(𝑡+1), 

ln𝑄(𝑡+2) 
[𝑙𝑛(m³ s-1)] [-3.5:0.2:2.9] & [2.9:end] 34 

Relative Magnitude of 

discharge in time windows 

(centered, left-ended, right-

ended) 

𝑄RMC, 𝑄RML, 𝑄RMR [-] [0:0.1:1] 11 

Discharge slope between  

time steps 𝑡-1 and 𝑡  

& time steps 𝑡 and 𝑡+1 

𝑄slopebefore  

𝑄slopeafter
 

[m³ s-1 h-1] [-50:5:90] 29 

Precipitation at time 𝑡 𝑃 [mm h-1] [0:1:30] 31 

Model-based event probability 

at time step 𝑡-1 
𝑒p(𝑡-1) [-] [0:0.1:1] 11 

* Bins identified by their central values [leftmost center value : step : rightmost center value]  
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Table 2: Conditional Entropy and relative uncertainty reduction of 1-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

𝑄-based group 

1 𝑒 | 𝑄(𝑡 − 2) 0.269 52.1 % 

2 𝑒 | 𝑄(𝑡 − 1) 0.264 51.3 % 

3 𝑒 | 𝑄(𝑡) 0.260 50.3 % 

4 𝑒 | 𝑄(𝑡 + 1) 0.255 49.4 % 

5 𝑒 | 𝑄(𝑡 + 2) 0.250 48.6 % 

6 𝑒 | ln𝑄(𝑡 − 2) 0.269 52.2 % 

7 𝑒 | ln𝑄(𝑡 − 1) 0.265 51.3 % 

8 𝑒 | ln𝑄(𝑡) 0.260 50.4 % 

9 𝑒 | ln𝑄(𝑡 + 1) 0.255 49.4 % 

10 𝑒 | ln𝑄(𝑡 + 2) 0.251 48.6 % 

11 𝑒 | 𝑄RMC 0.505 97.9 % 

12 𝑒 | 𝑄slopebefore
 0.473 91.8 % 

13 𝑒 | 𝑄slopeafter
 0.473 91.8 % 

𝑃-based group 

14 𝑒 | 𝑃 0.472 91.6 % 
* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 3: Conditional Entropy and relative uncertainty reduction of 2-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

𝑄-based group 

15 𝑒 | 𝑄(𝑡 + 2), 𝑄(𝑡) 0.226 43.9 % 

16 𝑒 | 𝑄(𝑡), 𝑄RMC 0.182 35.3 % 

17 𝑒 | 𝑄(𝑡 + 2), 𝑄RMC 0.191 37.1 % 

18 𝑒 | 𝑄(𝑡), 𝑄slopeafter
 0.254 49.3 % 

19 𝑒 | ln𝑄(𝑡 + 2), ln𝑄(𝑡) 0.233 45.1 % 

20 𝑒 | ln𝑄(𝑡), 𝑄RMC 0.185 35.8 % 

21 𝑒 | ln𝑄(𝑡 + 2), 𝑄RMC 0.194 37.5 % 

22 𝑒 | ln𝑄(𝑡), 𝑄slopeafter
  0.254 49.3 % 

𝑃-based group 

23 𝑒 | 𝑄(𝑡), 𝑃 0.248 48.2 % 

24 𝑒 | 𝑄(𝑡 + 2), 𝑃 0.247 48.0 % 

25 𝑒 | ln𝑄(𝑡), 𝑃 0.249 48.2 % 

26 𝑒 | ln𝑄(𝑡 + 2), 𝑃 0.249 48.2 % 
* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 4: Conditional Entropy and relative uncertainty reduction of 3-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

𝑄-based group 

27 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2) 0.144 28.0 % 

𝑃-based group 

28 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC 0.167 32.5 % 
* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 5: Conditional Entropy and relative uncertainty reduction of recursive 4-predictor models. 

# Predictive model (𝑿|𝒀) 𝐇(𝑿|𝒀) [𝐛𝐢𝐭]  𝐇(𝑿|𝒀)/𝐇(𝑿)* 

Model-based group 

29 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2), 𝑒p#27
(𝑡 − 1) 0.114 22.2 % 

30 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC, 𝑒p#28
(𝑡 − 1) 0.142 27.6 % 

* H(𝑋) = H(𝑒) = 0.516 bits 
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Table 6: Models selected for sample-based tests. 

Model group 1 predictor 2 predictors 3 predictors 4 predictors 

𝑄-based group 
𝑄(𝑡) 

#3 

𝑄(𝑡), 𝑄RMC 

#16 

𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2) 

#27 
- 

𝑃-based group - 
𝑄(𝑡), 𝑃 

#23 
𝑄(𝑡), 𝑃, 𝑄RMC 

#28 
- 

Model-based group 

with 𝑄-based predictors 
- - - 

𝑄(𝑡), 𝑄RMC, 𝑄(𝑡 + 2), 𝑒p#27
(𝑡 − 1) 

#29 

Model-based group 

with 𝑃-based predictors 
- - - 

𝑄(𝑡), 𝑃, 𝑄RMC, 𝑒p#28
(𝑡 − 1) 

#30 
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Table 7: Curse of Dimensionality and data size validation for models in Table 6. 

# Predictive model 
𝐇(𝑿) 

[bit] 
𝐇(𝑿)/𝐇(𝑿)* 

Sample size where 

𝐃𝐊𝐋/𝐇(𝑿) ≤ 𝟓 % 

Sample size 

[a] 

Number 

of bins 

0 𝑒 0.516 100 % ≥ 4398 0.5 2 

# Predictive model 
𝐇(𝑿|𝒀) 

[bit] 
𝐇(𝑿|𝒀)/𝐇(𝑿)* 

Sample size where 

𝐃𝐊𝐋/𝐇(𝑿|𝒀) ≤ 𝟓 % 

Sample size 

[a] 

Number 

of bins 

3 𝑒 | 𝑄(𝑡) 0.260 50.4 % ≥ 9952 1.1 68 

16 𝑒 | 𝑄(𝑡), 𝑄RMC 0.182 35.3 % ≥ 29 460 3.4 748 

23 𝑒 | 𝑄(𝑡), 𝑃 0.248 48.2 % ≥ 18 880 2.2 2108 

27 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2) 0.144 28.0 % ≥ 60 178 6.9 25 432 

28 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC 0.167 32.5 % ≥ 50 377 5.8 23 188 

29 𝑒 | 𝑄(𝑡), 𝑄RMC , 𝑄(𝑡 + 2), 𝑒p#27
(𝑡 − 1) 0.114 22.2 % ≥ 69 102 7.9 279 752 

30 𝑒 | 𝑄(𝑡), 𝑃, 𝑄RMC, 𝑒p#28
(𝑡 − 1) 0.142 27.6 % ≥ 62 667 7.2 255 068 

* H(𝑋) = H(𝑒) = 0.516 bits  
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Figure 1: Main steps of the data-driven model based on Information Theory. 
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Figure 2: Investigating the effect of sample size through Cross Entropy and Kullback-Leibler Divergence. 
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Figure 3: Input data – Discharge (blue), precipitation (black), user-based event classification (grey bars). Overview of the time 

series on the left and detailed example on the right.  
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Figure 4: Window size definitions for window types. a) 𝑸𝐑𝐌𝐂, b) 𝑸𝐑𝐌𝐋, c) 𝑸𝐑𝐌𝐑 window definitions, and d) window size analysis. 
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Figure 5: Cross Entropy for models in Table 6 as a function of sample size. 
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Figure 6: Curse of Dimensionality for models in Table 6 measured by the ratio of 𝐃𝐊𝐋 and 𝐇(𝑿|𝒀). 
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Figure 7: Application of 4-predictor model #29 (Table 5) to a subset of the training data. Observed discharge (blue), user-based 

binary event classification (grey bars) and model-based prediction of event probability (red).  
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Figure A1: Dispersion analysis of the Cross Entropy. The effect of the number of repetitions in the target model (#0 in Table 7). 
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