The 2023 MDPI Annual Report has
been released!
 
30 pages, 4958 KiB  
Review
Recent Advances in Aptamer-Based Biosensors for Bacterial Detection
by Vincent Léguillier, Brahim Heddi and Jasmina Vidic
Biosensors 2024, 14(5), 210; https://doi.org/10.3390/bios14050210 (registering DOI) - 23 Apr 2024
Abstract
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of [...] Read more.
The rapid and sensitive detection of pathogenic bacteria is becoming increasingly important for the timely prevention of contamination and the treatment of infections. Biosensors based on nucleic acid aptamers, integrated with optical, electrochemical, and mass-sensitive analytical techniques, have garnered intense interest because of their versatility, cost-efficiency, and ability to exhibit high affinity and specificity in binding bacterial biomarkers, toxins, and whole cells. This review highlights the development of aptamers, their structural characterization, and the chemical modifications enabling optimized recognition properties and enhanced stability in complex biological matrices. Furthermore, recent examples of aptasensors for the detection of bacterial cells, biomarkers, and toxins are discussed. Finally, we explore the barriers to and discuss perspectives on the application of aptamer-based bacterial detection. Full article
(This article belongs to the Special Issue Nano Biosensor and Its Application for In Vivo/Vitro Diagnosis)
Show Figures

Figure 1

13 pages, 695 KiB  
Article
Modification of High-Density Polyethylene with a Fibrillar–Porous Structure by Biocompatible Polyvinyl Alcohol via Environmental Crazing
by Alena Yarysheva and Olga Arzhakova
Polymers 2024, 16(9), 1184; https://doi.org/10.3390/polym16091184 (registering DOI) - 23 Apr 2024
Abstract
Polymer/polymer nanocomposites based on high-density polyethylene (HDPE) and biocompatible polyvinyl alcohol (PVA) were prepared by tensile drawing of HDPE in the PVA solutions via environmental crazing. The mechanism of this phenomenon was described. The HDPE/PVA nanocomposites were studied by the methods of scanning [...] Read more.
Polymer/polymer nanocomposites based on high-density polyethylene (HDPE) and biocompatible polyvinyl alcohol (PVA) were prepared by tensile drawing of HDPE in the PVA solutions via environmental crazing. The mechanism of this phenomenon was described. The HDPE/PVA nanocomposites were studied by the methods of scanning electron microscopy, atomic force microscopy, gravimetry, tensile tests, and their composition, properties, and performance were characterized. The content of PVA in the HDPE/PVA nanocomposites (up to 22 wt.%) was controlled by the tensile strain of HDPE and concentration of PVA in the solution. Depending on the content of PVA, the wettability of the HDPE/PVA nanocomposite (hydrophilic-lipophilic balance) could be varied in a broad interval from 45 to 98°. The modification of HDPE by the biocompatible PVA offers a beneficial avenue for practical applications of the HDPE/PVA composites as biomedical materials, packaging and protective materials, modern textile articles, breathable materials, membranes and sorbents, etc. Full article
(This article belongs to the Special Issue Biopolymer Composites for Biomedicine Applications)
Show Figures

Graphical abstract

25 pages, 2144 KiB  
Article
Machine Fault Diagnosis through Vibration Analysis: Time Series Conversion to Grayscale and RGB Images for Recognition via Convolutional Neural Networks
by Dominik Łuczak
Energies 2024, 17(9), 1998; https://doi.org/10.3390/en17091998 (registering DOI) - 23 Apr 2024
Abstract
Accurate and timely fault detection is crucial for ensuring the smooth operation and longevity of rotating machinery. This study explores the effectiveness of image-based approaches for machine fault diagnosis using data from a 6DOF IMU (Inertial Measurement Unit) sensor. Three novel methods are [...] Read more.
Accurate and timely fault detection is crucial for ensuring the smooth operation and longevity of rotating machinery. This study explores the effectiveness of image-based approaches for machine fault diagnosis using data from a 6DOF IMU (Inertial Measurement Unit) sensor. Three novel methods are proposed. The IMU6DoF-Time2GrayscaleGrid-CNN method converts the time series sensor data into a single grayscale image, leveraging the efficiency of a grayscale representation and the power of convolutional neural networks (CNNs) for feature extraction. The IMU6DoF-Time2RGBbyType-CNN method utilizes RGB images. The IMU6DoF-Time2RGBbyAxis-CNN method employs an RGB image where each channel corresponds to a specific axis (X, Y, Z) of the sensor data. This axis-aligned representation potentially allows the CNN to learn the relationships between movements along different axes. The performance of all three methods is evaluated through extensive training and testing on a dataset containing various operational states (idle, normal, fault). All methods achieve high accuracy in classifying these states. While the grayscale method offers the fastest training convergence, the RGB-based methods might provide additional insights. The interpretability of the models is also explored using Grad-CAM visualizations. This research demonstrates the potential of image-based approaches with CNNs for robust and interpretable machine fault diagnosis using sensor data. Full article
14 pages, 525 KiB  
Review
Enhancing Deposit Exploitation Efficiency Utilizing Small-Diameter Radial Boreholes via Hydraulic Drilling Nozzles for Optimal Resource Recovery
by Przemyslaw Toczek and Rafal Wisniowski
Appl. Sci. 2024, 14(9), 3552; https://doi.org/10.3390/app14093552 (registering DOI) - 23 Apr 2024
Abstract
The exploration and development of new hydrocarbon deposits is facing increasing challenges as the global shift to renewable energy sources, such as shallow geothermal deposits, wind farms, and photovoltaics, reduces the dependence on hydrocarbons. To navigate this evolving landscape, it becomes crucial to [...] Read more.
The exploration and development of new hydrocarbon deposits is facing increasing challenges as the global shift to renewable energy sources, such as shallow geothermal deposits, wind farms, and photovoltaics, reduces the dependence on hydrocarbons. To navigate this evolving landscape, it becomes crucial to find solutions that optimize the energy extraction efficiency while maximizing the use of hydrocarbon deposits. This requires exploring opportunities in existing fields and wells, including those slated for decommissioning. This article discusses the potential for extracting resources from seemingly depleted fields, where some 60–70% of the resources remain unrecoverable due to low reservoir energy. Meeting this challenge requires the implementation of secondary and tertiary EOR methods that involve the introduction of external energy to increase reservoir pressure and enhance resource recovery. One of the proposed innovative tertiary methods involves reaming the reservoir using multiple small-diameter radial boreholes generated by a hydraulic drilling nozzle. This strategy is designed to intensify the contact between the production hole and the reservoir layer, resulting in increased or commenced production in certain cases. The described method proves to be a practical application in hydrocarbon deposits, offering the dual benefits of mitigating environmental pollution by eliminating the need for drilling new boreholes and providing a cost-effective means of accessing resources in decommissioned deposits with insufficient reservoir energy for self-exploitation. Another article points out the design variation of a hydraulic drilling nozzle tailored specifically for reaming a reservoir layer. Taking the above into account, this article provides very practical information for future projects in which paths should be sought for the design and development of hydraulic wellheads, among other things, in order to intensify the production from hydrocarbon deposits. Full article
(This article belongs to the Section Energy Science and Technology)
18 pages, 1454 KiB  
Article
HLA-DR Expression in Natural Killer Cells Marks Distinct Functional States, Depending on Cell Differentiation Stage
by Sofya A. Kust, Maria O. Ustiuzhanina, Maria A. Streltsova, Pavel V. Shelyakin, Maxim A. Kryukov, Gennady V. Lutsenko, Anna V. Sudarikova, Ekaterina M. Merzlyak, Olga V. Britanova, Alexandr M. Sapozhnikov and Elena I. Kovalenko
Int. J. Mol. Sci. 2024, 25(9), 4609; https://doi.org/10.3390/ijms25094609 (registering DOI) - 23 Apr 2024
Abstract
HLA-DR-positive NK cells, found in both healthy individuals and patients with different inflammatory diseases, are characterized as activated cells. However, data on their capacity for IFNγ production or cytotoxic response vary between studies. Thus, more precise investigation is needed of the mechanisms related [...] Read more.
HLA-DR-positive NK cells, found in both healthy individuals and patients with different inflammatory diseases, are characterized as activated cells. However, data on their capacity for IFNγ production or cytotoxic response vary between studies. Thus, more precise investigation is needed of the mechanisms related to the induction of HLA-DR expression in NK cells, their associations with NK cell differentiation stage, and functional or metabolic state. In this work, HLA-DR-expressing NK cell subsets were investigated using transcriptomic analysis, metabolic activity assays, and analysis of intercellular signaling cascades. We demonstrated that HLA-DR+CD56bright NK cells were characterized by a proliferative phenotype, while HLA-DR+CD56dim NK cells exhibited features of adaptive cells and loss of inhibitory receptors with increased expression of MHC class II trans-activator CIITA. The activated state of HLA-DR-expressing NK cells was confirmed by higher levels of ATP and mitochondrial mass observed in this subset compared to HLA-DR cells, both ex vivo and after stimulation in culture. We showed that HLA-DR expression in NK cells in vitro can be induced both through stimulation by exogenous IL-2 and IL-21, as well as through auto-stimulation by NK-cell-produced IFNγ. At the intracellular level, HLA-DR expression depended on the activation of STAT3- and ERK1/2-mediated pathways, with subsequent activation of isoform 3 of the transcription factor CIITA. The obtained results broaden the knowledge about HLA-DR-positive NK cell appearance, diversity, and functions, which might be useful in terms of understanding the role of this subset in innate immunity and assessing their possible implications in NK cell-based therapy. Full article
(This article belongs to the Special Issue Advanced Research on Immune Cells and Cytokines)
13 pages, 964 KiB  
Article
Comparison of Functional Outcomes after Anterior Cruciate Ligament Reconstruction with Meniscal Repair for Unstable Versus Stable Meniscal Tears
by Jin Hyuck Lee, Gyu Bin Lee, WooYong Chung, Ji Won Wang, Sun Gyu Han, Hye Chang Rhim, Seung-Beom Han and Ki-Mo Jang
Diagnostics 2024, 14(9), 871; https://doi.org/10.3390/diagnostics14090871 (registering DOI) - 23 Apr 2024
Abstract
: This study aimed to compare functional outcomes including knee muscle strength in the quadriceps and hamstrings, and proprioception, assessed through dynamic postural stability (overall stability index [OSI]) and self-reported outcomes in the operated and non-operated knees between anterior cruciate ligament reconstruction (ACLR) [...] Read more.
: This study aimed to compare functional outcomes including knee muscle strength in the quadriceps and hamstrings, and proprioception, assessed through dynamic postural stability (overall stability index [OSI]) and self-reported outcomes in the operated and non-operated knees between anterior cruciate ligament reconstruction (ACLR) with meniscal repair for unstable (root and radial tears) and stable (longitudinal, horizontal, and bucket handle tears) meniscal tears. A total of 76 patients were randomly selected (41 with ACLR with meniscal repair for unstable meniscal tears and 35 with ACLR with meniscal repair for stable meniscal tears) at three different time points (preoperative, 6 months, and 12 months). Repeated measures analysis of variance was used to investigate the differences in outcomes for between-subject and within-subject factors. In the operated knees, there were no significant differences for functional outcomes between the two groups (all p > 0.05). In the non-operated knees, a significant difference was observed for the OSI between the two groups, which was significantly higher in ACLR with meniscal repair for unstable meniscal tears than for stable meniscal tears at 6 months (p < 0.001). Multiple linear regression analysis showed that age (p = 0.027), preoperative OSI in the operated knees (p = 0.005), and postoperative OSI in the operated knees at 6 months (p = 0.002) were significant and independent predictors for OSI in the non-operated knees at 6 months postoperatively. Therefore, while no differences were observed in functional outcomes between the two groups in the operated knees, dynamic postural stability was poorer at 6 months postoperatively in the non-operated knees of patients with ACLR with meniscal repair for unstable meniscal tears. Furthermore, a significant correlation was observed between preoperative/postoperative dynamic postural stability in the operated knees and postoperative dynamic postural stability in the non-operated knees. Hence, we recommend incorporating balance exercises for both knees in post-surgical rehabilitation, particularly for patients with unstable meniscal tears. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Sports Medicine)
14 pages, 5675 KiB  
Article
Quasi In Situ Study on the Slipping Behavior and Residual Stress of Copper Strip
by Yahui Liu, Qianqian Zhu, Yanjun Zhou, Kexing Song, Xiaokang Yang and Jing Chen
Metals 2024, 14(5), 491; https://doi.org/10.3390/met14050491 (registering DOI) - 23 Apr 2024
Abstract
The preparation method of integrated circuit lead frames has transitioned from stamping to etching, rendering them more sensitive to residual stress. Consequently, the dimensional deviations caused by residual stress become more pronounced, necessitating a thorough investigation into the copper strip processing process, particularly [...] Read more.
The preparation method of integrated circuit lead frames has transitioned from stamping to etching, rendering them more sensitive to residual stress. Consequently, the dimensional deviations caused by residual stress become more pronounced, necessitating a thorough investigation into the copper strip processing process, particularly considering the high-precision requirements of the lead frame. A quasi in situ method was employed to monitor the deformation process, and quantitative analyses and graphical reconstructions of the residual stress were conducted. The results indicated that the orientation evolution did not exhibit a significant correlation with grain size or grain aspect ratio. However, the stored energy of the different grains was related to their orientations. Further analysis of slip traces revealed that single or multiple slipping may be activated in grain subdivisions, and the Schmid factor difference ratio (SFDR) value proved to be an effective tool for analyzing this deformation mode. An even more interesting finding was that the deformation mode directly affected the residual stress distribution in local regions. The relationship between residual stress, Schmid factor, and SFDR was further analyzed, and a clear correlation between SFDR and residual stress was found in this study. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
28 pages, 1102 KiB  
Review
Pin1-Catalyzed Conformation Changes Regulate Protein Ubiquitination and Degradation
by Jessica Jeong, Muhammad Usman, Yitong Li, Xiao Zhen Zhou and Kun Ping Lu
Cells 2024, 13(9), 731; https://doi.org/10.3390/cells13090731 (registering DOI) - 23 Apr 2024
Abstract
The unique prolyl isomerase Pin1 binds to and catalyzes cis–trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate [...] Read more.
The unique prolyl isomerase Pin1 binds to and catalyzes cis–trans conformational changes of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and coordinating their activities after phosphorylation in both physiological and disease states. In this review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Meanwhile, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin–proteasome system can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent degradation using stereospecific antibodies. Full article
(This article belongs to the Special Issue Advances in Ubiquitination and Deubiquitination Research)
15 pages, 1060 KiB  
Case Report
A Multi-Faceted Digital Health Solution for Monitoring and Managing Diabetic Foot Ulcer Risk: A Case Series
by Emily Matijevich, Evan Minty, Emily Bray, Courtney Bachus, Maryam Hajizadeh and Brock Liden
Sensors 2024, 24(9), 2675; https://doi.org/10.3390/s24092675 (registering DOI) - 23 Apr 2024
Abstract
Introduction: Diabetic foot ulcers (DFU) are a devastating complication of diabetes. There are numerous challenges with preventing diabetic foot complications and barriers to achieving the care processes suggested in established foot care guidelines. Multi-faceted digital health solutions, which combine multimodal sensing, patient-facing biofeedback, [...] Read more.
Introduction: Diabetic foot ulcers (DFU) are a devastating complication of diabetes. There are numerous challenges with preventing diabetic foot complications and barriers to achieving the care processes suggested in established foot care guidelines. Multi-faceted digital health solutions, which combine multimodal sensing, patient-facing biofeedback, and remote patient monitoring (RPM), show promise in improving our ability to understand, prevent, and manage DFUs. Methods: Patients with a history of diabetic plantar foot ulcers were enrolled in a prospective cohort study and equipped with custom sensory insoles to track plantar pressure, plantar temperature, step count, and adherence data. Sensory insole data enabled patient-facing biofeedback to cue active plantar offloading in response to sustained high plantar pressures, and RPM assessments in response to data trends of concern in plantar pressure, plantar temperature, or sensory insole adherence. Three non-consecutive case participants that ultimately presented with pre-ulcerative lesions (a callus and/or erythematous area on the plantar surface of the foot) during the study were selected for this case series. Results: Across three illustrative patients, continuous plantar pressure monitoring demonstrated promise for empowering both the patient and provider with information for data-driven management of pressure offloading treatments. Conclusion: Multi-faceted digital health solutions can naturally enable and reinforce the integrative foot care guidelines. Multi-modal sensing across multiple physiologic domains supports the monitoring of foot health at various stages along the DFU pathogenesis pathway. Furthermore, digital health solutions equipped with remote patient monitoring unlock new opportunities for personalizing treatments, providing periodic self-care reinforcement, and encouraging patient engagement—key tools for improving patient adherence to their diabetic foot care plan. Full article
16 pages, 1767 KiB  
Article
Formulation and Characterization of Soybean Oil-in-Water Emulsions Stabilized Using Gelatinized Starch Dispersions from Plant Sources
by Ankita Singh, Takumi Umeda and Isao Kobayashi
Molecules 2024, 29(9), 1923; https://doi.org/10.3390/molecules29091923 (registering DOI) - 23 Apr 2024
Abstract
Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a “clean label” standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the [...] Read more.
Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a “clean label” standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85–90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15–25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential. Full article
(This article belongs to the Special Issue Polysaccharide-Based Biopolymer: Recent Development and Applications)
13 pages, 6556 KiB  
Article
Experimental Investigation of the Impact of Blended Fibers on the Mechanical Properties and Microstructure of Aeolian Sand Concrete
by Yi Zhou, Hao Li, Shuyu Yu and Haolong Guo
Materials 2024, 17(9), 1952; https://doi.org/10.3390/ma17091952 (registering DOI) - 23 Apr 2024
Abstract
To investigate the effect of hybrid fibers on the compressive strength of aeolian sand concrete, compressive strength tests were conducted on aeolian sand concrete with single polypropylene fibers and aeolian sand concrete with mixed polypropylene fibers and calcium carbonate whisker, and their variation [...] Read more.
To investigate the effect of hybrid fibers on the compressive strength of aeolian sand concrete, compressive strength tests were conducted on aeolian sand concrete with single polypropylene fibers and aeolian sand concrete with mixed polypropylene fibers and calcium carbonate whisker, and their variation rules were studied. Using scanning electron microscopy and nuclear magnetic resonance, the microstructure and pore structure of specimens were analyzed, and a mathematical model of the relationship between compressive strength and pore structure was established with gray entropy analysis. The results show that the compressive strength of hybrid fiber aeolian sand concrete first increases and then decreases with an increase in whisker content. When the replacement rate of wind-accumulated sand is 80% and the fiber content is 0.1%, the optimal volume content of whisker is 0.4%, and the 28 d compressive strength of whisker is 24.8% higher than that of aeolian sand concrete. The average relative errors of compressive strength at 7 d and 28 d are 8.16% and 7.48%, respectively, using the GM (1,3) model. This study can provide effective theoretical support for the application of calcium carbonate whisker and polypropylene fibers in aeolian sand concrete. Full article
Show Figures

Figure 1

18 pages, 1174 KiB  
Article
Phenolic, Amino Acid, Mineral, and Vitamin Contents during Berry Development in ‘Italia’ and ‘Bronx Seedless’ Grape Cultivars
by Harlene Hatterman-Valenti, Ozkan Kaya, Turhan Yilmaz, Fadime Ates and Metin Turan
Horticulturae 2024, 10(5), 429; https://doi.org/10.3390/horticulturae10050429 (registering DOI) - 23 Apr 2024
Abstract
Understanding the variations in amino acids, phenolic compounds, elements, and vitamins between grape varieties is essential for optimizing grape production, fine-tuning dietary recommendations, and harnessing the health potential of grapes. In this regard, this comprehensive study investigated the compositional diversity of two distinct [...] Read more.
Understanding the variations in amino acids, phenolic compounds, elements, and vitamins between grape varieties is essential for optimizing grape production, fine-tuning dietary recommendations, and harnessing the health potential of grapes. In this regard, this comprehensive study investigated the compositional diversity of two distinct table grape cultivars, ‘Bronx Seedless’ and ‘Italia’, at various critical phenological stages (BBCH-77, -79, -81, -83, -85, and -89). The research findings demonstrated remarkable differences in the concentrations of key nutritional components. Bronx Seedless consistently exhibited higher levels of several amino acids, including glutamate, phenylalanine, and aspartate with concentrations reaching 49.6, 52.7, and 24.8 pmol μL−1, respectively, in contrast to Italia. Regarding phenolic compounds, Italia emerged as the richer source, with concentrations notably higher for compounds such as vanillic acid (18.2 µg g1 FW) and gallic acid (37.4 µg g1 FW). Mineral analysis revealed variable concentrations, with Italia grapes containing higher levels of Fe (91.0 mg/kg) compared to Bronx Seedless (87.1 mg/kg); however, Bronx Seedless had slightly elevated levels of K (31,089 mg/kg) compared to Italia (28,184 mg/kg). Concidering vitamins, Italia grapes showcased superior levels of Vitamin B1 (14.1 mg/100 g FW) and Vitamin A (11.0 mg/100 g FW), while Bronx Seedless had higher concentrations of Vitamin B6 (29.5 mg/kg), C (3.9 mg/100 g FW) and Vitamin B2 (36.9 mg/100 g FW). Principal component analysis (PCA) elucidated complex relationships within these components, offering insights into potential correlations and interactions. The heatmap visualization further indicated the concentration gradients across various samples, unveiling the intricate nutritional profiles of these grape cultivars. This research can aid grape growers and consumers in making informed decisions about grape cultivars and their corresponding health advantages. Full article
(This article belongs to the Special Issue Advances in Physiology Studies in Fruit Development and Ripening)
7 pages, 1831 KiB  
Brief Report
The Tibial Tuberosity–Trochlear Groove Distance Can Either Increase or Decrease during Adolescent Growth
by Per-Henrik Randsborg, Hasan Banitalebi, Asbjørn Årøen and Truls Straume-Næsheim
Children 2024, 11(5), 504; https://doi.org/10.3390/children11050504 (registering DOI) - 23 Apr 2024
Abstract
Increased Tibial Tuberosity–Trochlear Groove (TT-TG) distance is a risk factor for recurrent lateral patella dislocations (RLPD). Population-based cross-sectional studies on healthy subjects demonstrate that the TT-TG increases gradually during growth until skeletal maturity, but changes in the TT-TG distance during adolescence in patients [...] Read more.
Increased Tibial Tuberosity–Trochlear Groove (TT-TG) distance is a risk factor for recurrent lateral patella dislocations (RLPD). Population-based cross-sectional studies on healthy subjects demonstrate that the TT-TG increases gradually during growth until skeletal maturity, but changes in the TT-TG distance during adolescence in patients with RLPD on an individual basis have not been previously investigated. This study aimed to measure changes in TT-TG distance during skeletal maturity. The TT-TG of 13 consecutive patients with open physes (mean age 13 years) with RLPD was measured on MRI at baseline and three years later. The change in TT-TG distance over the three-year period was measured. The mean change in TT-TG distance from the baseline to the three-year follow-up increased overall (2.9 mm, 95% Confidence Interval (CI) 2.1–3.7). However, the TT-TG distance could either increase or decrease during final growth. Our results suggest that the TT-TG distance in patients suffering from RLPD may either decrease or increase individually during the growth spurt. This contradicts the current concept that the TT-TG distance increases gradually during growth. Full article
(This article belongs to the Section Pediatric Orthopedics)
21 pages, 839 KiB  
Article
Purification and Biochemical Characterization of a Novel Fibrinolytic Enzyme from Culture Supernatant of Coprinus comatus
by Jinyu Wang, Xiaolan Liu, Yan Jing and Xiqun Zheng
Foods 2024, 13(9), 1292; https://doi.org/10.3390/foods13091292 (registering DOI) - 23 Apr 2024
Abstract
A novel fibrinolytic enzyme was produced by the liquid fermentation of Coprinus comatus. The enzyme was purified from the culture supernatant by hydrophobic interactions, gel filtration, and ion exchange chromatographies. It was purified by 241.02-fold, with a specific activity of 3619 U/mg [...] Read more.
A novel fibrinolytic enzyme was produced by the liquid fermentation of Coprinus comatus. The enzyme was purified from the culture supernatant by hydrophobic interactions, gel filtration, and ion exchange chromatographies. It was purified by 241.02-fold, with a specific activity of 3619 U/mg and a final yield of 10.02%. SDS-PAGE analysis confirmed the purity of the enzyme, showing a single band with a molecular weight of 19.5 kDa. The first nine amino acids of the N-terminal of the purified enzyme were A-T-Y-T-G-G-S-Q-T. The enzyme exhibited optimal activity at a temperature of 42 °C and pH 7.6. Its activity was significantly improved by Zn2+, K+, Ca2+, Mn2+, and Mg2+ while being inhibited by Fe2+, Fe3+, Al2+, and Ba2+. The activity of the enzyme was completely inhibited by ethylenediamine tetraacetic acid (EDTA), and it was also dose-dependently inhibited by phenylmethylsulfonyl fluoride (PMSF) and soy trypsin inhibitor (SBTI). However, inhibitors such as N-α-tosyl-L-phenylalanine chloromethyl ketone (TPCK), aprotinin, and pepstatin did not significantly affect its activity, suggesting that the enzyme was a serine-like metalloproteinase. The enzyme acted as both a plasmin-like fibrinolytic enzyme and a plasminogen activator, and it also exhibited the capability to hydrolyze fibrinogen and fibrin. In vitro, it demonstrated the ability to dissolve blood clots and exhibit anticoagulant properties. Furthermore, it was found that the enzyme prolonged activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), and reduced the levels of fibrinogen (FIB) and prothrombin activity (PA). Based on these studies, the enzyme has great potential to be developed as a natural agent for the prevention and treatment of thrombotic diseases. Full article
14 pages, 487 KiB  
Article
The Randomized, Multicenter, Open-Label, Controlled POLBOS 3 Trial Comparing Regular Drug-Eluting Stents and the Sirolimus-Eluting BiOSS LIM C Dedicated Coronary Bifurcation Stent: Four-Year Results
by Robert J. Gil, Adam Kern, Krystian Bojko, Aneta Gziut-Rudkowska, Dobrin Vassilev and Jacek Bil
Biomedicines 2024, 12(5), 938; https://doi.org/10.3390/biomedicines12050938 (registering DOI) - 23 Apr 2024
Abstract
This multicenter, randomized study aimed to compare the sirolimus-eluting BiOSS LIM C dedicated coronary bifurcation stent with second-generation -limus drug-eluting stents (rDESs) in the treatment of non-left main (non-LM) coronary bifurcation. The deployment of a single stent in the main vessel–main branch across [...] Read more.
This multicenter, randomized study aimed to compare the sirolimus-eluting BiOSS LIM C dedicated coronary bifurcation stent with second-generation -limus drug-eluting stents (rDESs) in the treatment of non-left main (non-LM) coronary bifurcation. The deployment of a single stent in the main vessel–main branch across a side branch was the default strategy in all patients. The primary endpoint was the rate of major cardiovascular events (cardiac death, myocardial infarction, and target lesion revascularization) at 48 months. We enrolled 230 patients, allocating 116 patients to the BiOSS LIM C group and 114 patients to the rDES group. Most procedures were elective (BiOSS vs. rDES: 48.3% vs. 59.6%, p = 0.09) and performed in bifurcations within the left anterior descending/diagonal branch (BiOSS vs. rDES: 51.7% vs. 61.4%, p = 0.15). At 48 months, there were no statistically significant differences between the BiOSS and rDES groups in terms of major adverse cardiovascular events (MACE), cardiac death, myocardial infarction (MI), or target lesion revascularization (TLR) as follows: MACEs—18.1% vs. 14.9%, HR 1.36, 95% CI 0.62–2.22, and p = 0.33; cardiac death—4.3% vs. 3.5%, HR 1.23, 95% CI 0.33–4.56, and p = 0.75; MI—2.6% vs. 3.5%, HR 0.73, 95% CI 0.17–3.23, and p = 0.68; and TLR—11.2% vs. 7.9%, HR 1.66, 95% CI 0.75–3.71, and p = 0.21. The implantation success rate of the BiOSS LIM C stent was very high, and the cumulative MACE rates were promising. The POLBOS 3 trial sets an important benchmark for treating non-LM coronary bifurcations (ClinicalTrials.gov NCT03548272). Full article
24 pages, 5310 KiB  
Article
Pathogenicity, Host Resistance, and Genetic Diversity of Fusarium Species under Controlled Conditions from Soybean in Canada
by Longfei Wu, Sheau-Fang Hwang, Stephen E. Strelkov, Rudolph Fredua-Agyeman, Sang-Heon Oh, Richard R. Bélanger, Owen Wally and Yong-Min Kim
J. Fungi 2024, 10(5), 303; https://doi.org/10.3390/jof10050303 (registering DOI) - 23 Apr 2024
Abstract
Fusarium spp. are commonly associated with the root rot complex of soybean (Glycine max). Previous surveys identified six common Fusarium species from Manitoba, including F. oxysporum, F. redolens, F. graminearum, F. solani, F. avenaceum, and F. [...] Read more.
Fusarium spp. are commonly associated with the root rot complex of soybean (Glycine max). Previous surveys identified six common Fusarium species from Manitoba, including F. oxysporum, F. redolens, F. graminearum, F. solani, F. avenaceum, and F. acuminatum. This study aimed to determine their pathogenicity, assess host resistance, and evaluate the genetic diversity of Fusarium spp. isolated from Canada. The pathogenicity of these species was tested on two soybean cultivars, ‘Akras’ (moderately resistant) and ‘B150Y1′ (susceptible), under greenhouse conditions. The aggressiveness of the fungal isolates varied, with root rot severities ranging from 1.5 to 3.3 on a 0–4 scale. Subsequently, the six species were used to screen a panel of 20 Canadian soybean cultivars for resistance in a greenhouse. Cluster and principal component analyses were conducted based on the same traits used in the pathogenicity study. Two cultivars, ‘P15T46R2′ and ‘B150Y1′, were consistently found to be tolerant to F. oxysporum, F. redolens, F. graminearum, and F. solani. To investigate the incidence and prevalence of Fusarium spp. in Canada, fungi were isolated from 106 soybean fields surveyed across Manitoba, Saskatchewan, Ontario, and Quebec. Eighty-three Fusarium isolates were evaluated based on morphology and with multiple PCR primers, and phylogenetic analyses indicated their diversity across the major soybean production regions of Canada. Overall, this study contributes valuable insights into host resistance and the pathogenicity and genetic diversity of Fusarium spp. in Canadian soybean fields. Full article
(This article belongs to the Special Issue Fusarium spp.: A Trans-Kingdom Fungus)
12 pages, 644 KiB  
Article
Host Volatiles Potentially Drive Two Evolutionarily Related Weevils to Select Different Grains
by Shaohua Lu, Lingfang Zhang, Yujie Lu, Mingshun Chen and Zhengyan Wang
Insects 2024, 15(5), 300; https://doi.org/10.3390/insects15050300 (registering DOI) - 23 Apr 2024
Abstract
The Sitophilus zeamais (maize weevil) and Sitophilus oryzae (rice weevil) are two insect pests that have caused huge economic losses to stored grains worldwide. It is urgent to develop an environmentally friendly strategy for the control of these destructive pests. Here, the olfactory-mediated [...] Read more.
The Sitophilus zeamais (maize weevil) and Sitophilus oryzae (rice weevil) are two insect pests that have caused huge economic losses to stored grains worldwide. It is urgent to develop an environmentally friendly strategy for the control of these destructive pests. Here, the olfactory-mediated selection preference of the two weevil species to three stored grains was analyzed, which should help establish a pull–push system in managing them. Bioassays showed that maize weevil adults prefer to select maize, followed by paddy and wheat, while rice weevil adults mainly migrate towards wheat. Volatile analyses revealed that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene are the major components in volatiles from both maize and wheat, but the abundance of these chemicals is much lower in maize than that in wheat. The volatile limonene was only detected in paddy. Y-tube bioassays suggest that 2-ethylhexanol, piperitone, and (+)-Δ-cadiene were all attractive to both weevils, whereas limonene was attractive only to rice weevils. Overall, maize weevil appeared more sensitive to the tested volatiles based on having much lower effective concentrations of these volatiles needed to attract them. The differences in volatile profiles among the grains and the sensitivity of the two species towards these volatiles may explain the behavioral differences between maize and rice weevils in selecting host grains. The differences in sensitivity of maize and rice weevils towards host volatile components with abundance differences are likely determinants driving the two insect species to migrate towards different host grains. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
24 pages, 3279 KiB  
Article
Impact of Vanadium–Titanium–Magnetite Mining Activities on Endophytic Bacterial Communities and Functions in the Root Systems of Local Plants
by Zhuang Xiong, Yunfeng Zhang, Xiaodie Chen, Ajia Sha, Wenqi Xiao, Yingyong Luo, Lianxin Peng, Liang Zou and Qiang Li
Genes 2024, 15(5), 526; https://doi.org/10.3390/genes15050526 (registering DOI) - 23 Apr 2024
Abstract
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium–titanium–magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable [...] Read more.
This study utilized 16S rRNA high-throughput sequencing technology to analyze the community structure and function of endophytic bacteria within the roots of three plant species in the vanadium–titanium–magnetite (VTM) mining area. The findings indicated that mining activities of VTM led to a notable decrease in both the biodiversity and abundance of endophytic bacteria within the root systems of Eleusine indica and Carex (p < 0.05). Significant reductions were observed in the populations of Nocardioides, concurrently with substantial increments in the populations of Pseudomonas (p < 0.05), indicating that Pseudomonas has a strong adaptability to this environmental stress. In addition, β diversity analysis revealed divergence in the endophytic bacterial communities within the roots of E. indica and Carex from the VTM mining area, which had diverged to adapt to the environmental stress caused by mining activity. Functional enrichment analysis revealed that VTM mining led to an increase in polymyxin resistance, nicotinate degradation I, and glucose degradation (oxidative) (p < 0.05). Interestingly, we found that VTM mining did not notably alter the endophytic bacterial communities or functions in the root systems of Dodonaea viscosa, indicating that this plant can adapt well to environmental stress. This study represents the primary investigation into the influence of VTM mining activities on endophytic bacterial communities and the functions of nearby plant roots, providing further insight into the impact of VTM mining activities on the ecological environment. Full article
(This article belongs to the Special Issue Genomics of Microbial Diversity, Evolution and Function)
10 pages, 269 KiB  
Article
Relation-Theoretic Nonlinear Almost Contractions with an Application to Boundary Value Problems
by Salma Aljawi and Izhar Uddin
Mathematics 2024, 12(9), 1275; https://doi.org/10.3390/math12091275 (registering DOI) - 23 Apr 2024
Abstract
This article investigates certain fixed-point results enjoying nonlinear almost contraction conditions in the setup of relational metric space. Some examples are constructed in order to indicate the profitability of our results. As a practical use of our findings, we demonstrate the existence of [...] Read more.
This article investigates certain fixed-point results enjoying nonlinear almost contraction conditions in the setup of relational metric space. Some examples are constructed in order to indicate the profitability of our results. As a practical use of our findings, we demonstrate the existence of a unique solution to a specific first-order boundary value problem. Full article
17 pages, 5039 KiB  
Article
Three-Dimensional Transient Electric Field Characteristics of High Pressure Electrode Boilers
by Xiaoke He, Yushuai Ruan and Weishu Wang
Electronics 2024, 13(9), 1615; https://doi.org/10.3390/electronics13091615 (registering DOI) - 23 Apr 2024
Abstract
An uneven electric field during the operation of an electrode boiler will lead to the emergence of a high field strength area and low field strength area in the furnace, which will endanger the safe and reliable operation and heating efficiency of the [...] Read more.
An uneven electric field during the operation of an electrode boiler will lead to the emergence of a high field strength area and low field strength area in the furnace, which will endanger the safe and reliable operation and heating efficiency of the electrode boiler. A numerical study of three-dimensional transient electric field distribution characteristics in a 10 kV high-voltage electrode boiler was carried out. The distribution characteristics of the global electric field of the electrode boiler under the nominal voltage of 10 kV were studied, and the distribution law of the electric field of the electrode boiler under poor power quality, such as different bus voltage and three-phase voltage imbalance, was explored. The results show that the electric field distribution characteristics of the three-phase transient are more obvious in the section closer to the electrode disc, and the electric field distribution is the most uniform in the section that is 1.4 m away from the furnace water. In the case of poor power quality, such as different bus voltage and three-phase voltage imbalance, the points of the maximum electric field intensity of the four surfaces change periodically with time, and the greater the bus voltage fluctuation, the more severe the impact on the transient electric field. The three-phase voltage imbalance will shift the peak value of the electric field intensity. The decrease or offset of electric field intensity in the electrode boiler caused by poor power quality will directly affect its heating efficiency. The electric field simulation results have a specific reference value for improving the internal electric field distribution and on-site operation and maintenance of the electrode boiler. Full article
17 pages, 387 KiB  
Article
Key Challenges of Cloud Computing Resource Allocation in Small and Medium Enterprises
by Abdulghafour Mohammad and Yasir Abbas
Digital 2024, 4(2), 372-388; https://doi.org/10.3390/digital4020018 (registering DOI) - 23 Apr 2024
Abstract
Although cloud computing offers many benefits, such as flexibility, scalability, and profitability, some small and medium enterprises (SMEs) are still unable to fully utilize cloud resources, such as memory, computing power, storage, and network bandwidth. This reduces their productivity and increases their expenses. [...] Read more.
Although cloud computing offers many benefits, such as flexibility, scalability, and profitability, some small and medium enterprises (SMEs) are still unable to fully utilize cloud resources, such as memory, computing power, storage, and network bandwidth. This reduces their productivity and increases their expenses. Therefore, the central objective of this paper was to examine the key challenges related to the allocation of cloud computing resources in small and medium enterprises. The method used for this study is based upon qualitative research using 12 interviews with 12 owners, managers, and experts in cloud computing in four countries: the United States of America, the United Kingdom, India, and Pakistan. Our results, based on our empirical data, show 11 key barriers to resource allocation in cloud computing that are classified based on the technology, organization, and environment (TOE) framework. Theoretically, this research contributes to the body of knowledge concerning cloud computing technology and offers valuable understanding of the cloud computing resource allocation approaches employed by small and medium enterprises (SMEs). In practice, this research is useful to aid SMEs in implementing successful and sustainable strategies for allocating cloud computing resources. Full article
18 pages, 398 KiB  
Review
Environmental Assessment of Pig Manure Treatment Systems through Life Cycle Assessment: A Mini-Review
by José Ferreira, Lenise Santos, Miguel Ferreira, António Ferreira and Idalina Domingos
Sustainability 2024, 16(9), 3521; https://doi.org/10.3390/su16093521 (registering DOI) - 23 Apr 2024
Abstract
The primary aim of this research was to evaluate and compare the environmental impacts, throughout the life cycle, of the main treatment systems employed by the industry, as well as to identify the processes that contribute most to these environmental impacts. To achieve [...] Read more.
The primary aim of this research was to evaluate and compare the environmental impacts, throughout the life cycle, of the main treatment systems employed by the industry, as well as to identify the processes that contribute most to these environmental impacts. To achieve this, a bibliographical search was conducted using the Web of Science Core Collection database platform, utilizing the keywords “life cycle assessment”, “pig”, “treatment”, and “manure” or “slurry”. The search was restricted to publications from the last five years (2019–2023), resulting in a total of 66 publications that were then analyzed according to the functional unit (FU) adopted. For the 10 publications whose FUs were expressed in tons or cubic meters of treated manure, a descriptive and quantitative analysis was carried out. It was found that anaerobic digestion has been the most widely used treatment technology for pig manure over the past five years, according to the LCA methodology. These systems, configured as biogas and biofertilizer production facilities, have proven to be environmentally friendly and could play a crucial role in the energy transition and decarbonization of the energy matrix. Full article
16 pages, 1370 KiB  
Article
Dietary Lysophosphatidylcholine Improves the Uptake of Astaxanthin and Modulates Cholesterol Transport in Pacific White Shrimp Litopenaeus vannamei
by Ziling Song, Yang Liu, Huan Liu, Zhengwei Ye, Qiang Ma, Yuliang Wei, Lindong Xiao, Mengqing Liang and Houguo Xu
Antioxidants 2024, 13(5), 505; https://doi.org/10.3390/antiox13050505 (registering DOI) - 23 Apr 2024
Abstract
Astaxanthin (AST), functioning as an efficient antioxidant and pigment, is one of the most expensive additives in shrimp feeds. How to improve the uptake efficiency of dietary astaxanthin into farmed shrimp is of significance. The present study investigated the effects of lysophosphatidylcholine (LPC), [...] Read more.
Astaxanthin (AST), functioning as an efficient antioxidant and pigment, is one of the most expensive additives in shrimp feeds. How to improve the uptake efficiency of dietary astaxanthin into farmed shrimp is of significance. The present study investigated the effects of lysophosphatidylcholine (LPC), an emulsifier, on dietary astaxanthin efficiency, growth performance, body color, body composition, as well as lipid metabolism of juvenile Pacific white shrimp (average initial body weight: 2.4 g). Three diets were prepared: control group, the AST group (supplemented with 0.02% AST), and the AST + LPC group (supplemented with 0.02% AST and 0.1% LPC). Each diet was fed to triplicate tanks, and each tank was stocked with 30 shrimp. The shrimp were fed four times daily for eight weeks. The AST supplementation improved the growth of white shrimp, while LPC further promoted the final weight of shrimp, but the whole-shrimp proximate composition and fatty acid composition were only slightly affected by AST and LPC. The LPC supplementation significantly increased the astaxanthin deposition in the muscle. The LPC supplementation significantly increased the shell yellowness of both raw and cooked shrimp compared to the AST group. Moreover, the dietary LPC increased the high-density lipoprotein-cholesterol content but decreased the low-density lipoprotein-cholesterol content in the serum, indicating the possible regulation of lipid and cholesterol transport. The addition of astaxanthin significantly up-regulated the expression of npc2 in the hepatopancreas compared to the control group, while the addition of LPC down-regulated the expression of mttp compared to the AST group. In conclusion, the LPC supplementation could facilitate the deposition of dietary astaxanthin into farmed shrimp and further enlarge the beneficial effects of dietary astaxanthin. LPC may also independently regulate shrimp body color and cholesterol transportation. This was the first investigation of the promoting effects of LPC on dietary astaxanthin efficiency. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop