Skip to main content
Log in

Characterization and corrosion studies of ternary Zn−Ni−Sn alloys

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Nine distinct zinc-nickel-tin films with different compositions have been galvanostatically electrodeposited. The films have been characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Their corrosion potentials and densities have been estimated using Tafel extrapolation. Next, the electrochemical behaviors of the films (deposited through the electrolytes containing 0, 6, 8, and 10 g/L SnCl2∙6H2O) have been examined based on cyclic voltammetry (CV) measurements. Further, these films have been immersed in 3.5wt% NaCl solution for 1 h, 1 d, 7 d, 14 d, 28 d, and 42 d followed by application of Tafel extrapolation and electrochemical impedance spectroscopy (EIS) tests on each aged sample. Finally, to analyze the morphologies and the compositions of the oxide films covering the surfaces of the 42-d aged films, FT-IR and SEM analyses have been performed. The results indicated that the Zn–Ni–Sn film produced through the bath including 6 g/L SnCl2∙6H2O exhibits superior corrosion resistance because of the high Ni content in the presence of Sn that promotes the barrier protection capability of the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [1] A. Brenner, Electrodeposition of Alloys, Academic Press, New York and London, 1963.

    Google Scholar 

  • [2] H. Fukushima, T. Akiyama, M. Yano, T. Ishikawa, and R. Kammel, Electrodeposition behavior of Zn-iron-group metal alloys from sulfate and chloride baths, ISIJ Int. 33(1993), No. 9, p. 1009.

    Article  CAS  Google Scholar 

  • [3] Y.P. Lin and J.R. Selman, Electrodeposition of corrosion-resistant Ni-Zn alloy, J. Electrochem. Soc, 140(1993), No. 5, p. 1299.

    Article  CAS  Google Scholar 

  • [4] G. Roventi, T. Bellezze, and R. Fratesi, Electrochemical study on the inhibitory effect of the underpotential deposition of zinc on Zn-Co alloy electrodeposition, Eec trochim. Acta, 51(2006), No. 13, p. 2691.

    CAS  Google Scholar 

  • [5] Z.D. Wu, L. Fedrizzi, and P.L. Bonora, Electrochemical studies of zinc-nickel codeposition in chloride baths, Surf. Coat. Technol, 85(1996), No. 3, p. 170.

    Article  CAS  Google Scholar 

  • [6] T.V. Byk, T.V. Gaevskaya, and L.S. Tsybulskaya, Effect of electrodeposition conditions on the composition, mcro-structure, and corrosion resistance of Zn-Ni alloy coatings, Surf. Coat. Technol., 202(2008), No. 24, p. 5817.

    Article  CAS  Google Scholar 

  • [7] F.J. Miranda, I.C.P. Margarit, O.R. Mattos, O.E. Barcia, and R. Wiart, Corrosion behavior of zinc-nickel alloy elec-trodeposited coatings, Corr. Sci, 55(1999), No. 8, p. 732.

    Article  CAS  Google Scholar 

  • [8] XG. Zhang, Galvanic corrosion of zinc and its alloys, J. Electrochem. Soc, 143(1996), No. 4, p. 1472.

    Article  CAS  Google Scholar 

  • [9] K. Wang, H.W. Pickering, and K.G. Weil, EQCM studies of the electrodeposition and corrosion of tin-zinc coatings, Electrochim. Acta, 46(2001), No. 24–25, p. 3835.

    Article  CAS  Google Scholar 

  • [10] EA. Pavlatou, M. Stroumbouli, P. Gyftou, and N. Spyrellis, Hardening effect induced by incorporation of SiC particles in nickel electrodeposits, J. Appl. Electrochem. 36(2006), No. 4, p. 385.

    Article  CAS  Google Scholar 

  • [11] A. Durairajan, A. Krishniyer, B.S. Haran, R.E. White, and B.N. Popov, Characterization of hydrogen permeation through a corrosion-resistant zinc-nickel-phosphorus aloy, Corrosion, 56(2000), No. 3, p. 283.

    Article  CAS  Google Scholar 

  • [12] Z. Zhang, W.H. Leng, J.F. Li, J.Q. Zhang, J.M. Wang, and C.N. Cao, Cooperation behavior of iron and phosphorus in electrodeposition of zinc-iron-phosphorus coating, Mater. Chem. Phys., 77(2003), No. 2, p. 497.

    Article  CAS  Google Scholar 

  • [13] M.M. Younan and T. Oki, Electrodeposition of Zn-Ni-Fe alloy in acidic chloride bath with separated anodes, J. Appl. Electrochem., 26(1996), No. 5, p. 537.

    Article  CAS  Google Scholar 

  • [14] M. M. Abou-Krisha, F. H. Assaf and S. A. El-Naby, Electrodeposition behavior of zinc-nickel-iron alloys from sulfate bath, J. Coat. Technol. Res., 6(2009), p. 391.

    Article  CAS  Google Scholar 

  • [15] M.M. Abou-Krisha, F.H. Assaf, and S.A. El-Naby, Electrodeposition and characterization of zinc-nickel-iron alloy from sulfate bath: Influence of platingbath temperature, J. Solid State Electrochem., 13(2009), No. 6, p. 879.

    Article  CAS  Google Scholar 

  • [16] M.M. Younan, Surface microstructure and corrosion resistance of electrodeposited ternary Zn-Ni-Co alloy, J. Appl. Electrochem., 30(2000), No. 1, p. 55.

    Article  CAS  Google Scholar 

  • [17] M.M. Abou-Krisha, H.M. Rageh, and EA. Matter, Electrochemical studies on the electrodeposited Zn-Ni-Co ternary alloy in different media, Surf. Coat. Technol, 202(2008), No. 15, p. 3739.

    Article  CAS  Google Scholar 

  • [18] N. Eliaz, K. Venkatakrishna, and A.C. Hegde, Hegde, Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys, Surf. Coat. Technol, 205(2010), No. 7, p. 1969.

    Article  CAS  Google Scholar 

  • [19] J. Vijayakumar, S. Mohan, S.A. Kumar, S.R. Suseendiran, and S. Pavithra, Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution, Int. J. Hydrogen Energy, 38(2013), No. 25, p. 10208.

    Article  CAS  Google Scholar 

  • [20] ZY. Zhou and T.J. O’Keefe, Modification of anomalous deposition of Zn-Ni alloy by using tin additions, Surf Coat. Technol, 96(1997), No. 2–3, p. 191.

    Article  CAS  Google Scholar 

  • [21] S. Fashu and R. Khan, Electrodeposition of ternary Zn-Ni-Sn alloys from an ionic liquid based on choline chloride and their characterisation, Trans. IMF, 94(2016), No. 5, p. 237.

    Article  CAS  Google Scholar 

  • [22] R. Solmaz and B.D. Karahan, Effect of tin additions on the corrosion behaviors of zinc-nickel coatings, [in] 19th International Metallurgy and Materials Congress Proceeding, Istanbul, 2018, p. 1224.

    Google Scholar 

  • [23] C.M.K. PraveenKumar, T.V. Venkatesha, K. Vathsala, and K.O. Nayana, Electrodeposition and corrosion behavior of Zn-Ni and Zn-Ni-Fe2O3 coatings, J. Coat. Technol. Res. 9(2012), No. 1, p. 71.

    Article  CAS  Google Scholar 

  • [24] S. Fashu, C. Gu, J.L. Zhang, M.L. Huang, X. Wang and J. Tu, Effect of EDTA and NH4Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 2054.

    Article  CAS  Google Scholar 

  • [25] CF. Han, Q. Liu, and DG. Ivey, Kinetics of Sn electrode-position from Sn(II)-citrate solutions, Electrochim. Acta, 53(2008), No. 28, p. 8332.

    Article  CAS  Google Scholar 

  • [26] S.T. Bahade, A.S. Lanje, and S.J. Sharma, Synthesis of SnO2 thin film by sol-gel spin coating technique for optical and ethanol gas sensing application, Int. J. Sci. Eng. Res., 3(2017), No. 7, p. 567.

    Google Scholar 

  • [27] K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, and J. Dutta, Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications, Mater. Res. Bull, 63(2015), p. 134.

    Article  CAS  Google Scholar 

  • [28] A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, CD. Bathula, A.V. Tran, and S.W. Lee, Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced pho tocatalytic activity, J. Ind. Eng. Chem., 61(2018), p. 78.

    Article  CAS  Google Scholar 

  • [29] K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande, and V. Chabukswar, Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes, J. Macromol. Sci. Part A, 51(2014), No. 12, p. 941.

    Article  CAS  Google Scholar 

  • [30] F. Wolfart, D.P. Dubal, M. Vidotti, and P. G′omez-Romero, Hybrid core-shell nanostructured electrodes made of polypyrrole nanotubes coated with Ni(OH)2 nanoflakes for high energy-density supercapacitors, RSC Adv. 6(2016), No. 18, p. 15062.

    Article  CAS  Google Scholar 

  • [31] A.S. Adekunle, J.A.O. Oyekunle, O.S. Oluwafemi, A.O. Joshua, A.O. Makinde, A.O. Ogunfowokan, MA. Eleruja, and EE. Ebenso, Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2-) and nitric oxide (NO), Int. J. Electrochem. Sci., 9(2014), p. 3008.

    Google Scholar 

  • [32] N.V. Krstajić, V.D. Jović, Lj. Gajić-Krstajić, B.M. Jović, AL. Antozzi, and G.N. Martelli, Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution, Int. J. Hydrogen Energy, 33(2008), No. 14, p. 3676.

    Article  Google Scholar 

  • [33] S. Costovici A.C. Manea, T. Visan, and L. Anicai, Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids, Electrochim. Acta, 207(2016), p. 97.

    Article  CAS  Google Scholar 

  • [34] J. García-Antón, R.M. Fernández-Domene, R. Sánchez-To-var, C. Escrivà-Cerdán, R. Leiva-García, V. García, and A. Urtiaga, Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (III) passivation baths, Chem. Eng Sci, 111(2014), p. 402.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Deniz Karahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solmaz, R., Karahan, B.D. Characterization and corrosion studies of ternary Zn−Ni−Sn alloys. Int J Miner Metall Mater 27, 74–82 (2020). https://doi.org/10.1007/s12613-019-1888-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1888-4

Keywords

Navigation