Skip to main content
Log in

The distance exponent for Liouville first passage percolation is positive

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Discrete Liouville first passage percolation (LFPP) with parameter \(\xi > 0\) is the random metric on a sub-graph of \(\mathbb Z^2\) obtained by assigning each vertex z a weight of \(e^{\xi h(z)}\), where h is the discrete Gaussian free field. We show that the distance exponent for discrete LFPP is strictly positive for all \(\xi > 0\). More precisely, the discrete LFPP distance between the inner and outer boundaries of a discrete annulus of size \(2^n\) is typically at least \(2^{\alpha n}\) for an exponent \(\alpha > 0\) depending on \(\xi \). This is a crucial input in the proof that LFPP admits non-trivial subsequential scaling limits for all \(\xi > 0\) and also has theoretical implications for the study of distances in Liouville quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The reason for the factor of \(\pi /2\) here is to allow us to compare the discrete and continuum variants of LFPP with the same value of \(\xi \), c.f. [2]. This choice of constant makes it so that the variance of \(h_n(0)\) is asymptotic to \(\log (n)\).

  2. LFPP with \(\xi =1/\sqrt{6}\) corresponds to Liouville quantum gravity with parameter \(\gamma =\sqrt{8/3}\) (equivalently, matter central charge \({\mathbf {c}_{\mathrm M}}= 0\)) and the fact that \(Q(1/\sqrt{6}) = 5/\sqrt{6}\) is a consequence of the fact that \(\sqrt{8/3}\)-LQG has Hausdorff dimension 4. See [10] for details.

References

  1. Aru, J., Lupu, T., Sepúlveda, A.: The first passage sets of the 2D gaussian free field: convergence and isomorphisms. Commun. Math. Phys. 375(3), 1885–1929 (2020). arXiv:1805.09204

    Article  MathSciNet  Google Scholar 

  2. Ang, M.: Comparison of discrete and continuum Liouville first passage percolation. Electron. Commun. Probab., 24:Paper No. 64, 12, (2019), arXiv:1904.09285

  3. Ang, M., Park, M., Pfeffer, J., Sheffield, S.: Brownian loops and the central charge of a Liouville random surface. ArXiv e-prints (2020). arXiv:2005.11845

  4. Aru, J., Sepúlveda, A.: Two-valued local sets of the 2D continuum Gaussian free field: connectivity, labels, and induced metrics. Electron. J. Probab. 23(61), 35 (2018). arXiv:1801.03828

    MathSciNet  MATH  Google Scholar 

  5. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  6. Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 69(1), 62–123 (2016). arXiv:1301.6669

    Article  MathSciNet  Google Scholar 

  7. Berestycki, N.: Introduction to the Gaussian Free Field and Liouville Quantum Gravity. Available at https://homepage.univie.ac.at/nathanael.berestycki/articles.html

  8. Borell, C.: The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30(2), 207–216 (1975)

    Article  MathSciNet  Google Scholar 

  9. Ding, J., Dubédat, J., Dunlap, A., Falconet, H.: Tightness of Liouville first passage percolation for \(\gamma \in (0,2)\). Publ. Math. Inst. Hautes Études Sci. 132, 353–403 (2020). arXiv:1904.08021

    Article  MathSciNet  Google Scholar 

  10. Ding, J., Gwynne, E.: The fractal dimension of Liouville quantum gravity: universality, monotonicity, and bounds. Commun. Math. Phys. 374, 1877–1934 (2018). arXiv:1807.01072

    Article  MathSciNet  Google Scholar 

  11. Ding, J., Gwynne, E.: Tightness of supercritical Liouville first passage percolation. J. Eur. Math. Soci. (to appear). arXiv:2005.13576 (2020)

  12. Ding, J., Gwynne, E.: Regularity and confluence of geodesics for the supercritical Liouville quantum gravity metric. ArXiv e-prints, April 2021, arXiv:2104.06502

  13. Ding, J., Gwynne, E.: Uniqueness of the critical and supercritical Liouville quantum gravity metrics. ArXiv e-prints (2021). arXiv:2110.00177

  14. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342(3), 869–907 (2016). arXiv:1410.7318

    Article  MathSciNet  Google Scholar 

  15. Ding, J., Li, L.: Chemical distances for percolation of planar Gaussian free fields and critical random walk loop soups. Commun. Math. Phys. 360(2), 523–553 (2018). arXiv:1605.04449

    Article  MathSciNet  Google Scholar 

  16. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011). arXiv:1206.0212

    Article  MathSciNet  Google Scholar 

  17. Ding, J., Wirth, M.: Percolation for level-sets of Gaussian free fields on metric graphs. ArXiv e-prints (2018). arXiv:1807.11117

  18. Ding, J., Wirth, M., Wu, H.: Crossing estimates from metric graph and discrete GFF. ArXiv e-prints (2020). arXiv:2001.06447

  19. Fernique, X.: Regularité des trajectoires des fonctions aléatoires gaussiennes. pp. 1–96. Lecture Notes in Math., Vol. 480 (1975)

  20. Gwynne, E., Holden, N., Pfeffer, J., Remy, G.: Liouville quantum gravity with matter central charge in (1, 25): a probabilistic approach. Commun. Math. Phys. 376(2), 1573–1625 (2020). arXiv:1903.09111

    Article  MathSciNet  Google Scholar 

  21. Gwynne, E., Miller, J.: Existence and uniqueness of the Liouville quantum gravity metric for \(\gamma \in (0,2)\). Invent. Math. 223(1), 213–333 (2021). arXiv:1905.00383

    Article  MathSciNet  Google Scholar 

  22. Gwynne, E., Pfeffer, J.: Bounds for distances and geodesic dimension in Liouville first passage percolation. Electron. Commun. Probab. 24(56), 12 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Gwynne, E.: Random surfaces and Liouville quantum gravity. Notices Am. Math. Soc. 67(4), 484–491 (2020). arXiv:1908.05573

    Article  MathSciNet  Google Scholar 

  24. Lupu, T.: From loop clusters and random interlacements to the free field. Ann. Probab. 44(3), 2117–2146 (2016). arXiv:1402.0298

    Article  MathSciNet  Google Scholar 

  25. Liu, M., Wu, H.: Scaling limits of crossing probabilities in metric graph GFF. Electron. J. Probab., 26:Paper No. 37, 46 (2021). arXiv:2004.09104

  26. Miller, J., Qian, W.: The geodesics in Liouville quantum gravity are not Schramm–Loewner evolutions. Probab. Theory Related Fields 177(3–4), 677–709 (2020). arXiv:1812.03913

    Article  MathSciNet  Google Scholar 

  27. Pfeffer, J.: Weak Liouville quantum gravity metrics with matter central charge \({\mathbf{c}}\in (-\infty , 25)\). ArXiv e-prints (2021). arXiv:2104.04020

  28. Sudakov, V.N., Cirel’ son, B.S.: Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974. Problems in the theory of probability distributions, II

  29. Sznitman, A.-S.: Topics in occupation times and Gaussian free fields, volume 16. European Mathematical Society, (2012)

  30. Tassion, V.: Crossing probabilities for Voronoi percolation. Ann. Probab. 44(5), 3385–3398 (2016). arXiv:1410.6773

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for helpful comments on an earlier version of the paper. We thank Josh Pfeffer for helpful discussions. J.D. was partially supported by NSF grant DMS-1757479. E.G. was supported by a Clay research fellowship and a Trinity college, Cambridge junior research fellowship. The research of A.S was supported by the ERC grant LiKo 676999 and is now supported by Grant ANID AFB170001 and FONDECYT iniciación de investigación \(\hbox {N}^o\) 11200085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewain Gwynne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Gwynne, E. & Sepúlveda, A. The distance exponent for Liouville first passage percolation is positive. Probab. Theory Relat. Fields 181, 1035–1051 (2021). https://doi.org/10.1007/s00440-021-01093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01093-x

Mathematics Subject Classification

Navigation