Skip to main content
Log in

Active mitochondrial respiration in cancer: a target for the drug

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The relative contribution of mitochondrial respiration and subsequent energy production in malignant cells has remained controversial to date. Enhanced aerobic glycolysis and impaired mitochondrial respiration have gained more attention in the metabolic study of cancer. In contrast to the popular concept, mitochondria of cancer cells oxidize a diverse array of metabolic fuels to generate a majority of the cellular energy by respiration. Several mitochondrial respiratory chain (MRC) subunits’ expressions are critical for the growth, metastasis, and cancer cell invasion. Also, the assembly factors, which regulate the integration of individual MRC complexes into native super-complexes, are upregulated in cancer. Moreover, a series of anti-cancer drugs function by inhibiting respiration and ATP production. In this review, we have specified the roles of mitochondrial fuels, MRC subunits, and super-complex assembly factors that promote active respiration across different cancer types and discussed the potential roles of MRC inhibitor drugs in controlling cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467(7318):929–934. https://doi.org/10.1038/nature09486

    Article  CAS  PubMed  Google Scholar 

  2. Mai N, Chrzanowska-Lightowlers ZM, Lightowlers RN (2017) The process of mammalian mitochondrial protein synthesis. Cell Tissue Res 367(1):5–20. https://doi.org/10.1007/s00441-016-2456-0

    Article  CAS  PubMed  Google Scholar 

  3. Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL (2013) The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol 169:1–8. https://doi.org/10.1111/bjd.12208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson DL, Cox MC, Freeman WH (2004) Lehninger: principles of biochemistry. W. H. Freeman and Company, New York

    Google Scholar 

  5. Wallace D (2012) Mitochondria and cancer. Nat Rev Cancer 12:685–698. https://doi.org/10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia P, Zhao Z (2019) Characterization of tumor-suppressor gene inactivation events in 33 cancer types. Cell Rep 26:496–506. https://doi.org/10.1016/j.celrep.2018.12.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang D, Sun W, Zhou Y et al (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 37(1):173–187. https://doi.org/10.1007/s10555-017-9726-5

    Article  CAS  PubMed  Google Scholar 

  8. Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7(3):21. https://doi.org/10.3390/cells7030021

    Article  CAS  PubMed Central  Google Scholar 

  9. Warburg O (1956) On the origin of cancer cells. Science 123:309–314. https://doi.org/10.1126/science.123.3191.309

    Article  CAS  PubMed  Google Scholar 

  10. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    Article  CAS  PubMed  Google Scholar 

  11. Xintaropoulou C et al (2018) Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer 18:636. https://doi.org/10.1186/s12885-018-4521-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218. https://doi.org/10.1016/j.tibs.2015.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu Y, Liu S, Yin S et al (2017) The reverse warburg effect is likely to be an achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget 8(34):57813–57825. https://doi.org/10.18632/oncotarget.18175

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl AcadSci USA 107(19):8788–8793. https://doi.org/10.1073/pnas.1003428107

    Article  Google Scholar 

  15. Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar EA, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, Eccles D, Haupt LM, Griffiths LR, Neuzil J, Berridge MV (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21(1):81–94. https://doi.org/10.1016/j.cmet.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Meierhofer D et al (2006) Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Br J Cancer 94(2):268–274. https://doi.org/10.1038/sj.bjc.6602929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeBerardinis RJ, Chandel NS (2020) We need to talk about the Warburg effect. Nat Metab 2(2):27–129. https://doi.org/10.1038/s42255-020-0172-2

    Article  Google Scholar 

  18. Moog S, Lussey-Lepoutre C, Favier J (2020) Epigenetic and metabolic reprogramming of SDH-deficient paragangliomas. Endocr Relat Cancer 27(12):R451–R463. https://doi.org/10.1530/ERC-20-0346

    Article  CAS  PubMed  Google Scholar 

  19. Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7(5):277–285. https://doi.org/10.1038/nrurol.2010.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Izquierdo-Garcia JL, Cai LM, Chaumeil MM, Eriksson P, Robinson AE, Pieper RO, Phillips JJ, Ronen SM (2014) Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase. PLoS ONE 9(9):e108289. https://doi.org/10.1371/journal.pone.0108289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cardaci S, Zheng L, MacKay G, van den Broek NJ, MacKenzie ED, Nixon C, Stevenson D, Tumanov S, Bulusu V, Kamphorst JJ, Vazquez A, Fleming S, Schiavi F, Kalna G, Blyth K, Strathdee D, Gottlieb E (2015) Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol 17(10):1317–1326. https://doi.org/10.1038/ncb3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mullen AR, Wheaton WW, Jin ES, Chen PH, Sullivan LB, Cheng T, Yang Y, Linehan WM, Chandel NS, DeBerardinis RJ (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388. https://doi.org/10.1038/nature10642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amuthan G et al (2001) Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J 20(8):1910–1920. https://doi.org/10.1093/emboj/20.8.1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313(3):459–465. https://doi.org/10.1016/j.bbrc.2003.11.136

    Article  CAS  PubMed  Google Scholar 

  25. Prager BC, Xie Q, Bao S, Rich JN (2019) Cancer stem cells: the architects of the tumor ecosystem. Cell Stem Cell 24(1):41–53. https://doi.org/10.1016/j.stem.2018.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S (2018) Cancer stem cell metabolism and potential therapeutic targets. Front Oncol 8:203. https://doi.org/10.3389/fonc.2018.00203

    Article  PubMed  PubMed Central  Google Scholar 

  27. DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5):e1600200. https://doi.org/10.1126/sciadv.1600200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L (2018) Mitochondrial metabolism and cancer. Cell Res 28(3):265–280. https://doi.org/10.1038/cr.2017.155

    Article  CAS  PubMed  Google Scholar 

  29. Zong WX, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61(5):667–676. https://doi.org/10.1016/j.molcel.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sellers K, Fox MP, Bousamra M 2nd et al (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Invest 125(2):687–698. https://doi.org/10.1172/JCI72873

    Article  PubMed  PubMed Central  Google Scholar 

  31. Viale A, Pettazzoni P, Lyssiotis CA et al (2014) Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514(7524):628–632. https://doi.org/10.1038/nature13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastò A, Bellio C, Pilotto G et al (2014) Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 5(12):4305–4319. https://doi.org/10.18632/oncotarget.2010

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ghosh A, Bera S, Ghosal S, Ray S, Basu A, Ray M (2011) Differential inhibition/inactivation of mitochondrial complex I implicates its alteration in malignant cells. Biochemistry (Mosc) 76(9):1051–1060. https://doi.org/10.1134/S0006297911090100

    Article  CAS  Google Scholar 

  34. Cheng T, Sudderth J, Yang C et al (2011) Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21):8674–8679. https://doi.org/10.1073/pnas.1016627108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Christen S, Lorendeau D, Schmieder R et al (2016) Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep 17(3):837–848. https://doi.org/10.1016/j.celrep.2016.09.042

    Article  CAS  PubMed  Google Scholar 

  36. Lin M (2011) Molecular imaging using positron emission tomography in colorectal cancer. Discov Med 11(60):435–447

    PubMed  Google Scholar 

  37. Castello-Cros R et al (2011) Matrix remodeling stimulates stromal autophagy, “fueling” cancer cell mitochondrial metabolism and metastasis. Cell Cycle 10(12):2021–2034. https://doi.org/10.4161/cc.10.12.16002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pavlides S et al (2010) Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling.” Aging 2(4):185–199. https://doi.org/10.18632/aging.100134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonuccelli G, Tsirigos A, Whitaker-Menezes D et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9(17):3506–3514. https://doi.org/10.4161/cc.9.17.12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Faubert B, Li KY, Cai L et al (2017) Lactate metabolism in human lung tumors. Cell 171(2):358-371.e9. https://doi.org/10.1016/j.cell.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boidot R, Vegran F, Meulle A et al (2012) Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 72(4):939–948. https://doi.org/10.1158/0008-5472.CAN-11-2474

    Article  CAS  PubMed  Google Scholar 

  42. Li AM, Ducker GS, Li Y et al (2020) Metabolic profiling reveals a dependency of human metastatic breast cancer on mitochondrial serine and one-carbon unit metabolism. Mol Cancer Res 18(4):599–661. https://doi.org/10.1158/1541-7786.MCR-19-0606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tibbetts AS, Appling DR (2010) Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57–81. https://doi.org/10.1146/annurev.nutr.012809.104810

    Article  CAS  PubMed  Google Scholar 

  44. Nilsson R, Jain M, Madhusudhan N et al (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128. https://doi.org/10.1038/ncomms4128

    Article  CAS  PubMed  Google Scholar 

  45. Lin H, Huang B, Wang H et al (2018) MTHFD2 Overexpression predicts poor prognosis in renal cell carcinoma and is associated with cell proliferation and vimentin-modulated migration and invasion. Cell Physiol Biochem 51(2):991–1000. https://doi.org/10.1159/000495402

    Article  CAS  PubMed  Google Scholar 

  46. Liu X, Huang Y, Jiang C et al (2016) Methylenetetrahydrofolate dehydrogenase 2 overexpression is associated with tumor aggressiveness and poor prognosis in hepatocellular carcinoma. Dig Liver Dis 48(8):953–960. https://doi.org/10.1016/j.dld.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  47. He Z, Wang X, Zhang H et al (2020) High expression of folate cycle enzyme MTHFD1L correlates with poor prognosis and increased proliferation and migration in colorectal cancer. J Cancer 11(14):4213–4221. https://doi.org/10.7150/jca.35014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elia I, Broekaert D, Christen S et al (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267. https://doi.org/10.1038/ncomms15267

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pandhare J, Donald SP, Cooper SK, Phang JM (2009) Regulation and function of proline oxidase under nutrient stress. J Cell Biochem 107(4):759–768. https://doi.org/10.1002/jcb.22174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang J, Srivastava S, Zhang J (2019) Starve cancer cells of glutamine: break the spell or make a hungry monster? Cancers (Basel) 11(6):804. https://doi.org/10.3390/cancers11060804

    Article  CAS  Google Scholar 

  51. Yoo HC, Park SJ, Nam M et al (2020) A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab 31(2):267-283.e12. https://doi.org/10.1016/j.cmet.2019.11.020

    Article  CAS  PubMed  Google Scholar 

  52. Fan J, Kamphorst JJ, Mathew R et al (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. MolSyst Biol 9:712. https://doi.org/10.1038/msb.2013.65

    Article  CAS  Google Scholar 

  53. van Geldermalsen M, Wang Q, Nagarajah R et al (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35(24):3201–3208. https://doi.org/10.1038/onc.2015.381

    Article  CAS  PubMed  Google Scholar 

  54. Xiang L, Mou J, Shao B et al (2019) Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis 10(2):40. https://doi.org/10.1038/s41419-018-1291-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu G, Zhu J, Yu M et al (2015) Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J Transl Med 13:144. https://doi.org/10.1186/s12967-015-0500-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuo CY, Ann DK (2018) When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Commun (Lond) 38(1):47. https://doi.org/10.1186/s40880-018-0317-9

    Article  Google Scholar 

  57. Bensaad K, Favaro E, Lewis CA et al (2014) Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation. Cell Rep 9(1):349–365. https://doi.org/10.1016/j.celrep.2014.08.056

    Article  CAS  PubMed  Google Scholar 

  58. Pike LS, Smift AL, Croteau NJ, Ferrick DA (1807) Wu M (2011) Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta 6:726–734. https://doi.org/10.1016/j.bbabio.2010.10.022

    Article  CAS  Google Scholar 

  59. Camarda R, Zhou AY, Kohnz RA et al (2016) Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med 22(4):427–432. https://doi.org/10.1038/nm.4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zaytseva YY, Harris JW, Mitov MI et al (2015) Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget 6(22):18891–18904. https://doi.org/10.18632/oncotarget.3783

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huang D, Li T, Wang L, Zhang L, Yan R, Li K, Xing S, Wu G, Hu L, Jia W, Lin SC, Dang CV, Song L, Gao P, Zhang H (2016) Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res 26(10):1112–1130. https://doi.org/10.1038/cr.2016.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bajzikova M, Kovarova J, Coelho AR et al (2019) Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 29(2):399-416.e10. https://doi.org/10.1016/j.cmet.2018.10.014

    Article  CAS  PubMed  Google Scholar 

  63. Khutornenko AA, Roudko VV, Chernyak BV, Vartapetian AB, Chumakov PM, Evstafieva AG (2010) Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci USA 107(29):12828–12833. https://doi.org/10.1073/pnas.0910885107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669. https://doi.org/10.1016/j.cell.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  65. Villa E, Ali ES, Sahu U, Ben-Sahra I (2019) Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers (Basel) 11(5):688. https://doi.org/10.3390/cancers11050688

    Article  CAS  Google Scholar 

  66. Martinez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger G, Chandel NS (2020) Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature 585(7824):288–292. https://doi.org/10.1038/s41586-020-2475-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sykes DB, Kfoury YS, Mercier FE, Wawer MJ, Law JM, Haynes MK, Lewis TA, Schajnovitz A, Jain E, Lee D, Meyer H, Pierce KA, Tolliday NJ, Waller A, Ferrara SJ, Eheim AL, Stoeckigt D, Maxcy KL, Cobert JM, Bachand J, Scadden DT (2016) Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell 167(1):171-186.e15. https://doi.org/10.1016/j.cell.2016.08.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sykes DB (2018) The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert Opin Ther Targets 22(11):893–898. https://doi.org/10.1080/14728222.2018.1536748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu D, Wang W, Chen W, Lian F, Lang L, Huang Y, Xu Y, Zhang N, Chen Y, Liu M, Nussinov R, Cheng F, Lu W, Huang J (2018) Pharmacological inhibition of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid leukemia cells. Haematologica 103(9):1472–1483. https://doi.org/10.3324/haematol.2018.188185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brown KK, Spinelli JB, Asara JM, Toker A (2017) Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov 7(4):391–399. https://doi.org/10.1158/2159-8290.CD-16-0611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mathur D, Stratikopoulos E, Ozturk S, Steinbach N, Pegno S, Schoenfeld S, Yong R, Murty VV, Asara JM, Cantley LC, Parsons R (2017) PTEN regulates glutamine flux to pyrimidine synthesis and sensitivity to dihydroorotate dehydrogenase inhibition. Cancer discov 7(4):380–390. https://doi.org/10.1158/2159-8290.CD-16-0612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koundinya M, Sudhalter J, Courjaud A, Lionne B, Touyer G, Bonnet L, Menguy I, Schreiber I, Perrault C, Vougier S, Benhamou B, Zhang B, He T, Gao Q, Gee P, Simard D, Castaldi MP, Tomlinson R, Reiling S, Barrague M, Morris A (2018) Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant kras-driven cancers. Cell Chem Biol 25(6):705-717.e11. https://doi.org/10.1016/j.chembiol.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  73. Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfur transferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27(2):601–611. https://doi.org/10.1096/fj.12-216507

    Article  CAS  PubMed  Google Scholar 

  74. Panza E, De Cicco P, Armogida C et al (2015) Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res 28(1):61–72. https://doi.org/10.1111/pcmr.12312

    Article  CAS  PubMed  Google Scholar 

  75. Bhattacharyya S, Saha S, Giri K et al (2013) Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS ONE 8(11):e79167. https://doi.org/10.1371/journal.pone.0079167

    Article  PubMed  PubMed Central  Google Scholar 

  76. Szabo C, Coletta C, Chao C et al (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl AcadSci USA 110(30):12474–12479. https://doi.org/10.1073/pnas.1306241110

    Article  Google Scholar 

  77. Libiad M, Vitvitsky V, Bostelaar T et al (2019) Hydrogen sulfide perturbs mitochondrial bioenergetics and triggers metabolic reprogramming in colon cells. J Biol Chem 294(32):12077–12090. https://doi.org/10.1074/jbc.RA119.009442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukherjee S, Ghosh A (2020) Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion 53:1–20. https://doi.org/10.1016/j.mito.2020.04.002

    Article  CAS  PubMed  Google Scholar 

  79. Janiszewska M, Suvà ML, Riggi N et al (2012) Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev 26(17):1926–1944. https://doi.org/10.1101/gad.188292.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin CS, Liu LT, Ou LH, Pan SC, Lin CI, Wei YH (2018) Role of mitochondrial function in the invasiveness of human colon cancer cells. Oncol Rep 39(1):316–330. https://doi.org/10.3892/or.2017.6087

    Article  CAS  PubMed  Google Scholar 

  81. Wang Q, Li M, Gan Y et al (2020) Mitochondrial protein UQCRC1 is oncogenic and a potential therapeutic target for pancreatic cancer. Theranostics 10(5):2141–2157. https://doi.org/10.7150/thno.38704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shang Y, Zhang F, Li D et al (2018) Overexpression of UQCRC2 is correlated with tumor progression and poor prognosis in colorectal cancer. Pathol Res Pract 214(10):1613–1620. https://doi.org/10.1016/j.prp.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  83. Park ER, Kim SB, Lee JS et al (2017) The mitochondrial hinge protein, UQCRH, is a novel prognostic factor for hepatocellular carcinoma. Cancer Med 6(4):749–760. https://doi.org/10.1002/cam4.1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao F, Liu Q, Li G et al (2016) Identification of ubiquinol cytochrome c reductase hinge (UQCRH) as a potential diagnostic biomarker for lung adenocarcinoma. Open Biol 6(6):150256. https://doi.org/10.1098/rsob.150256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim HC, Chang J, Lee HS, Kwon HJ (2017) Mitochondrial UQCRB as a new molecular prognostic biomarker of human colorectal cancer. ExpMol Med 49(11):e391. https://doi.org/10.1038/emm.2017.152

    Article  CAS  Google Scholar 

  86. Chen WL, Kuo KT, Chou TY, Chen CL, Wang CH, Wei YH, Wang LS (2012) The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis. BMC Cancer 12:273. https://doi.org/10.1186/1471-2407-12-273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gao SP, Sun HF, Jiang HL et al (2015) Loss of COX5B inhibits proliferation and promotes senescence via mitochondrial dysfunction in breast cancer. Oncotarget 6(41):43363–43374. https://doi.org/10.18632/oncotarget.6222

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dar S, Chhina J, Mert I et al (2017) Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci Rep 7(1):8760. https://doi.org/10.1038/s41598-017-09206-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chu YD, Lin WR, Lin YH et al (2020) COX5B-mediated bioenergetic alteration regulates tumor growth and migration by modulating AMPK-UHMK1-ERK cascade in hepatoma. Cancers (Basel) 12(6):1646. https://doi.org/10.3390/cancers12061646

    Article  CAS  Google Scholar 

  90. Telang S, Nelson KK, Siow DL et al (2012) Cytochrome c oxidase is activated by the oncoprotein Ras and is required for A549 lung adenocarcinoma growth. Mol Cancer 11:60. https://doi.org/10.1186/1476-4598-11-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nie K, Li J, He X, Wang Y, Zhao Q, Du M, Sun H, Wang J, Lyu J, Fang H, Jin L (2020) COX6B2 drives metabolic reprogramming toward oxidative phosphorylation to promote metastasis in pancreatic ductal cancer cells. Oncogenesis 9(5):51. https://doi.org/10.1038/s41389-020-0231-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang J, Liu J, Zhang S, Yang Y, Gong J (2018) The overexpression of cytochrome c oxidase subunit 6C activated by Kras mutation is related to energy metabolism in pancreatic cancer. Transl Cancer Res 7(2):290–300. https://doi.org/10.21037/tcr.2018.03.02

    Article  CAS  Google Scholar 

  93. Bera S, Ray M (2009) The transcriptional cascade associated with creatine kinase down-regulation and mitochondrial biogenesis in mice sarcoma. Cell Mol Biol Lett 14(3):481–496. https://doi.org/10.2478/s11658-009-0014-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang YJ, Jan YH, Chang YC, Tsai HF, Wu AT, Chen CL, Hsiao M (2019) ATP synthase subunit epsilon overexpression promotes metastasis by modulating AMPK signaling to induce epithelial-to-mesenchymal transition and is a poor prognostic marker in colorectal cancer patients. J Clin Med 8(7):1070. https://doi.org/10.3390/jcm8071070

    Article  CAS  PubMed Central  Google Scholar 

  95. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341. https://doi.org/10.1016/j.stem.2012.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu G, Luo Q, Li H, Liu Q, Ju Y, Song G (2020) Increased oxidative phosphorylation is required for stemness maintenance in liver cancer stem cells from hepatocellular carcinoma cell line HCCLM3 cells. Int J Mol Sci 21(15):5276. https://doi.org/10.3390/ijms21155276

    Article  CAS  PubMed Central  Google Scholar 

  97. Park HK, Hong JH, Oh YT, Kim SS, Yin J, Lee AJ, Chae YC, Kim JH, Park SH, Park CK, Park MJ, Park JB, Kang BH (2019) Interplay between TRAP1 and Sirtuin-3 modulates mitochondrial respiration and oxidative stress to maintain stemness of glioma stem cells. Cancer Res 79(7):1369–1382. https://doi.org/10.1158/0008-5472.CAN-18-2558

    Article  CAS  PubMed  Google Scholar 

  98. Valle S, Alcala S, Martin-Hijano L et al (2020) Exploiting oxidative phosphorylation to promote the stem and immune evasive properties of pancreatic cancer stem cells. Nat Commun 11(1):5265. https://doi.org/10.1038/s41467-020-18954-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Letts JA, Sazanov LA (2017) Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol 24(10):800–808. https://doi.org/10.1038/nsmb.3460

    Article  CAS  PubMed  Google Scholar 

  100. Protasoni M, Pérez-Pérez R, Lobo-Jarne T et al (2020) Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO J 39(3):e102817. https://doi.org/10.15252/embj.2019102817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Azuma K, Ikeda K, Inoue S (2020) Functional mechanisms of mitochondrial respiratory chain supercomplex assembly factors and their involvement in muscle quality. Int J Mol Sci 21(9):E3182. https://doi.org/10.3390/ijms21093182

    Article  CAS  PubMed  Google Scholar 

  102. Milenkovic D, Blaza JN, Larsson NG, Hirst J (2017) The enigma of the respiratory chain supercomplex. Cell Metab 25(4):765–776. https://doi.org/10.1016/j.cmet.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  103. Zhang K, Wang G, Zhang X et al (2016) COX7AR is a stress-inducible mitochondrial cox subunit that promotes breast cancer malignancy. Sci Rep 6:31742. https://doi.org/10.1038/srep31742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ikeda K, Horie-Inoue K, Suzuki T et al (2019) Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat Commun 10(1):4108. https://doi.org/10.1038/s41467-019-12124-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nuskova H, Mracek T, Mikulova T et al (2015) Mitochondrial ATP synthasome: expression and structural interaction of its components. Biochem Biophys Res Commun 464(3):787–793. https://doi.org/10.1016/j.bbrc.2015.07.034

    Article  CAS  PubMed  Google Scholar 

  106. Beutner G, Alanzalon RE, Porter GA Jr (2017) Cyclophilin D regulates the dynamic assembly of mitochondrial ATP synthase into synthasomes. Sci Rep 7(1):14488. https://doi.org/10.1038/s41598-017-14795-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Timohhina N, Guzun R, Tepp K et al (2009) Direct measurement of energy fluxes from mitochondria into cytoplasm in permeabilized cardiac cells in situ: some evidence for mitochondrial interactosome. J Bioenerg Biomembr 41(3):259–275. https://doi.org/10.1007/s10863-009-9224-8

    Article  CAS  PubMed  Google Scholar 

  108. Kaambre T, Chekulayev V, Shevchuk I et al (2013) Metabolic control analysis of respiration in human cancer tissue. Front Physiol 4:151. https://doi.org/10.3389/fphys.2013.00151

    Article  PubMed  PubMed Central  Google Scholar 

  109. Koit A, Shevchuk I, Ounpuu L et al (2017) Mitochondrial respiration in human colorectal and breast cancer clinical material is regulated differently. Oxid Med Cell Longev 2017:1372640. https://doi.org/10.1155/2017/1372640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hollinshead KER, Parker SJ, Eapen VV, Encarnacion-Rosado J, Sohn A, Oncu T, Cammer M, Mancias JD, Kimmelman AC (2020) Respiratory supercomplexes promote mitochondrial efficiency and growth in severely hypoxic pancreatic cancer. Cell Rep 33(1):108231. https://doi.org/10.1016/j.celrep.2020.108231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS (2018) Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 24(11):2482–2490. https://doi.org/10.1158/1078-0432.CCR-17-3070

    Article  CAS  PubMed  Google Scholar 

  112. Andrzejewski S, Siegel PM, St-Pierre J (2018) Metabolic profiles associated with metformin efficacy in cancer. Front Endocrinol (Lausanne) 9:372. https://doi.org/10.3389/fendo.2018.00372

    Article  Google Scholar 

  113. Andrzejewski S, Gravel SP, Pollak M, St-Pierre J (2014) Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer Metab 2:12. https://doi.org/10.1186/2049-3002-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wheaton WW, Weinberg SE, Hamanaka RB et al (2014) Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3:e02242. https://doi.org/10.7554/eLife.02242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Piel S, Ehinger JK, Elmér E, Hansson MJ (2015) Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial complex I inhibition. Acta Physiol 213(1):171–180. https://doi.org/10.1111/apha.12311

    Article  CAS  Google Scholar 

  116. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, Furlong TJ, Greenfield JR, Greenup LC, Kirkpatrick CM, Ray JE, Timmins P, Williams KM (2011) Clinical pharmacokinetics of metformin. Clin Pharmacokinet 50(2):81–98. https://doi.org/10.2165/11534750-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  117. Al-Abri SA, Hayashi S, Thoren KL, Olson KR (2013) Metformin overdose-induced hypoglycemia in the absence of other antidiabetic drugs. Clin Toxicol 51(5):444–447. https://doi.org/10.3109/15563650.2013.784774

    Article  CAS  Google Scholar 

  118. Fontaine E (2018) Metformin-induced mitochondrial complex i inhibition: facts, uncertainties, and consequences. Front Endocrinol 9:753. https://doi.org/10.3389/fendo.2018.00753

    Article  Google Scholar 

  119. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661. https://doi.org/10.1096/fj.07-9574LSF

    Article  CAS  PubMed  Google Scholar 

  120. Suissa S, Azoulay L (2014) Metformin and cancer: mounting evidence against an association. Diabetes Care 37(7):1786–1788. https://doi.org/10.2337/dc14-0500

    Article  CAS  PubMed  Google Scholar 

  121. Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol 29(2):1314–1327. https://doi.org/10.1007/s12032-011-9846-7

    Article  CAS  PubMed  Google Scholar 

  122. Veiga SR, Ge X, Mercer CA, Hernández-Álvarez MI, Thomas HE, Hernandez-Losa J, Ramón Y, Cajal S, Zorzano A, Thomas G, Kozma SC (2018) Phenformin-induced mitochondrial dysfunction sensitizes hepatocellular carcinoma for dual inhibition of mTOR. Clin Cancer Res 24(15):3767–3780. https://doi.org/10.1158/1078-0432.CCR-18-0177

    Article  CAS  PubMed  Google Scholar 

  123. Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ (2013) Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494(7436):256–260. https://doi.org/10.1038/nature11808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ghosh A, Bera S, Ray S, Banerjee T, Ray M (2011) Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma. Biochemistry (Mosc) 76(10):1164–1171. https://doi.org/10.1134/S0006297911100105

    Article  CAS  Google Scholar 

  125. Ghosh S, Pal A, Ray M (2019) Methylglyoxal in combination with 5-Fluorouracil elicits improved chemosensitivity in breast cancer through apoptosis and cell cycle inhibition. Biomed Pharmacother 114:108855. https://doi.org/10.1016/j.biopha.2019.108855

    Article  CAS  PubMed  Google Scholar 

  126. Roy A, Sarker S, Upadhyay P et al (2018) Methylglyoxal at metronomic doses sensitizes breast cancer cells to doxorubicin and cisplatin causing synergistic induction of programmed cell death and inhibition of stemness. Biochem Pharmacol 156:322–339. https://doi.org/10.1016/j.bcp.2018.08.041

    Article  CAS  PubMed  Google Scholar 

  127. Roy A, Ahir M, Bhattacharya S et al (2017) Induction of mitochondrial apoptotic pathway in triple negative breast carcinoma cells by methylglyoxal via generation of reactive oxygen species. Mol Carcinog 56(9):2086–2103. https://doi.org/10.1002/mc.22665

    Article  CAS  PubMed  Google Scholar 

  128. Paul-Samojedny M, Łasut B, Pudełko A, Fila-Daniłow A, Kowalczyk M, Suchanek-Raif R, Zieliński M, Borkowska P, Kowalski J (2016) Methylglyoxal (MGO) inhibits proliferation and induces cell death of human glioblastoma multiforme T98G and U87MG cells. Biomed Pharmacother 80:236–243. https://doi.org/10.1016/j.biopha.2016.03.021

    Article  CAS  PubMed  Google Scholar 

  129. Ghosh M, Talukdar D, Ghosh S, Bhattacharyya N, Ray M, Ray S (2006) In vivo assessment of toxicity and pharmacokinetics of methylglyoxal. Augmentation of the curative effect of methylglyoxal on cancer-bearing mice by ascorbic acid and creatine. Toxicol Appl Pharmacol 212(1):45–58. https://doi.org/10.1016/j.taap.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  130. Talukdar D, Ray S, Das S, Jain AK, Kulkarni A, Ray M (2006) Treatment of a number of cancer patients suffering from different types of malignancies by methylglyoxal-based formulation: a promising result. Cancer Therapy 4B:205–222

    Google Scholar 

  131. Naguib A, Mathew G, Reczek CR et al (2018) Mitochondrial complex I inhibitors expose a vulnerability for selective killing of pten-null cells. Cell Rep 23(1):58–67. https://doi.org/10.1016/j.celrep.2018.03.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Caboni P, Sherer TB, Zhang N, Taylor G, Na HM, Greenamyre JT, Casida JE (2004) Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol 17(11):1540–1548. https://doi.org/10.1021/tx049867r

    Article  CAS  PubMed  Google Scholar 

  133. Kim WY, Chang DJ, Hennessy B, Kang HJ, Yoo J, Han SH, Kim YS, Park HJ, Seo SY, Mills G, Kim KW, Hong WK, Suh YG, Lee HY (2008) A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy. Cancer Prev Res 1(7):577–587. https://doi.org/10.1158/1940-6207.CAPR-08-0184

    Article  CAS  Google Scholar 

  134. Lee SC, Min HY, Choi H et al (2016) Deguelin analogue SH-1242 inhibits Hsp90 activity and exerts potent anticancer efficacy with limited neurotoxicity. Cancer Res 76(3):686–699. https://doi.org/10.1158/0008-5472.CAN-15-1492

    Article  CAS  PubMed  Google Scholar 

  135. Vangapandu HV, Alston B, Morse J, Ayres ML, Wierda WG, Keating MJ, Marszalek JR, Gandhi V (2018) Biological and metabolic effects of IACS-010759, an OXPHOS inhibitor, on chronic lymphocytic leukemia cells. Oncotarget 9(38):24980–24991. https://doi.org/10.18632/oncotarget.25166

    Article  PubMed  PubMed Central  Google Scholar 

  136. Molina JR, Sun Y, Protopopova M et al (2018) An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 24(7):1036–1046. https://doi.org/10.1038/s41591-018-0052-4

    Article  CAS  PubMed  Google Scholar 

  137. Poivre M, Duez P (2017) Biological activity and toxicity of the Chinese herb Magnolia officinalis Rehder & E. Wilson (Houpo) and its constituents. J Zhejiang Univ Sci B 18(3):194–214. https://doi.org/10.1631/jzus.B1600299

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhang Q, Cheng G, Pan J et al (2020) Magnolia extract is effective for the chemoprevention of oral cancer through its ability to inhibit mitochondrial respiration at complex I. Cell Commun Signal 18(1):58. https://doi.org/10.1186/s12964-020-0524-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou Y, Bi Y, Yang C, Yang J, Jiang Y, Meng F, Yu B, Khan M, Ma T, Yang H (2013) Magnolol induces apoptosis in MCF-7 human breast cancer cells through G2/M phase arrest and caspase-independent pathway. Pharmazie 68(9):755–762

    CAS  PubMed  Google Scholar 

  140. Xiao S, Chen F, Gao C (2017) Antitumor activity of 4-O-Methylhonokiol in human oral cancer cells is mediated via ROS generation, disruption of mitochondrial potential, cell cycle arrest and modulation of Bcl-2/Bax proteins. J B Univ 22(6):1577–1581

    Google Scholar 

  141. Rohlenova K, Sachaphibulkij K, Stursa J et al (2017) Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2 high breast cancer. Antioxid Redox Signal 26(2):84–103. https://doi.org/10.1089/ars.2016.6677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Larosche I, Letteron P, Fromenty B, Vadrot N, Abbey-Toby A, Feldmann G, Pessayre D, Mansouri A (2007) Tamoxifen inhibits topoisomerases, depletes mitochondrial DNA, and triggers steatosis in mouse liver. J Pharmacol Exp Ther 321(2):526–535. https://doi.org/10.1124/jpet.106.114546

    Article  CAS  PubMed  Google Scholar 

  143. Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG (2020) From old to new repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 98:211–223. https://doi.org/10.1016/j.semcdb.2019.05.025

    Article  CAS  PubMed  Google Scholar 

  144. Min HY, Jang HJ, Park KH et al (2019) The natural compound gracillin exerts potent antitumor activity by targeting mitochondrial complex II. Cell Death Dis 10(11):810. https://doi.org/10.1038/s41419-019-2041-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Min HY, Pei H, Hyun SY, Boo HJ, Jang HJ, Cho J, Kim JH, Son J, Lee HY (2020) Potent anticancer effect of the natural steroidal saponin gracillin is produced by inhibiting glycolysis and oxidative phosphorylation-mediated bioenergetics. Cancers 12(4):913. https://doi.org/10.3390/cancers12040913

    Article  CAS  PubMed Central  Google Scholar 

  146. Guo L, Shestov AA, Worth AJ et al (2016) Inhibition of mitochondrial complex II by the anticancer agent lonidamine. J Biol Chem 291(1):42–57. https://doi.org/10.1074/jbc.M115.697516

    Article  CAS  PubMed  Google Scholar 

  147. Cheng G, Zhang Q, Pan J, Lee Y, Ouari O, Hardy M, Zielonka M, Myers CR, Zielonka J, Weh K, Chang AC, Chen G, Kresty L, Kalyanaraman B, You M (2019) Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun 10(1):2205. https://doi.org/10.1038/s41467-019-10042-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nath K, Guo L, Nancolas B, Nelson DS, Shestov AA, Lee SC, Roman J, Zhou R, Leeper DB, Halestrap AP, Blair IA (1866) Glickson JD (2016) Mechanism of antineoplastic activity of lonidamine. Biochim Biophys Acta 2:151–162. https://doi.org/10.1016/j.bbcan.2016.08.001

    Article  CAS  Google Scholar 

  149. Cervantes-Madrid D, Romero Y, Dueñas-González A (2015) Reviving lonidamine and 6-diazo-5-oxo-L-norleucine to be used in combination for metabolic cancer therapy. Biomed Res Int 2015:690492. https://doi.org/10.1155/2015/690492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nath K, Nelson DS, Ho AM, Lee SC, Darpolor MM, Pickup S, Zhou R, Heitjan DF, Leeper DB, Glickson JD (2013) (31) P and (1) H MRS of DB-1 melanoma xenografts: lonidamine selectively decreases tumor intracellular pH and energy status and sensitizes tumors to melphalan. NMR Biomed 26(1):98–105. https://doi.org/10.1002/nbm.2824

    Article  CAS  PubMed  Google Scholar 

  151. Huang Y, Sun G, Sun X, Li F, Zhao L, Zhong R, Peng Y (2020) The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment. Cancers 12(11):3332. https://doi.org/10.3390/cancers12113332

    Article  CAS  PubMed Central  Google Scholar 

  152. Xie QR, Liu Y, Shao J, Yang J, Liu T, Zhang T, Wang B, Mruk DD, Silvestrini B, Cheng CY, Xia W (2013) Male contraceptive Adjudin is a potential anti-cancer drug. Biochem Pharmacol 85(3):345–355. https://doi.org/10.1016/j.bcp.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  153. Fiorillo M, Lamb R, Tanowitz HB et al (2016) Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. Oncotarget 7(23):34084–34099. https://doi.org/10.18632/oncotarget.9122

    Article  PubMed  PubMed Central  Google Scholar 

  154. Ashton TM, Fokas E, Kunz-Schughart A, Folkes LK, Anbalagan S, Huether M, Kelly CJ, Pirovano G, Buffa FM, Hammond EM, Stratford M, Muschel RJ, Higgins GS, McKenna WG (2016) The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat Commun 7:12308. https://doi.org/10.1038/ncomms12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Knecht W, Henseling J, Löffler M (2000) Kinetics of inhibition of human and rat dihydroorotate dehydrogenase by atovaquone, lawsone derivatives, brequinar sodium and polyporic acid. Chem Biol Interact 124(1):61–76. https://doi.org/10.1016/s0009-2797(99)00144-1

    Article  CAS  PubMed  Google Scholar 

  156. Falloon J, Sargent S, Piscitelli SC, Bechtel C, LaFon SW, Sadler B, Walker RE, Kovacs JA, Polis MA, Davey RT Jr, Lane HC, Masur H (1999) Atovaquone suspension in HIV-infected volunteers: pharmacokinetics, pharmacodynamics, and TMP-SMX interaction study. Pharmacotherapy 19(9):1050–1056. https://doi.org/10.1592/phco.19.13.1050.31598

    Article  CAS  PubMed  Google Scholar 

  157. Sun Y, Xu H, Chen X, Li X, Luo B (2019) Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochem Biophys Res Commun 508(2):626–632. https://doi.org/10.1016/j.bbrc.2018.11.182

    Article  CAS  PubMed  Google Scholar 

  158. Nixon GL, Moss DM, Shone AE, Lalloo DG, Fisher N, O’Neill PM, Ward SA, Biagini GA (2013) Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother 68(5):977–985. https://doi.org/10.1093/jac/dks504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Dijk SN, Protasoni M, Elpidorou M, Kroon AM, Taanman JW (2020) Mitochondria as target to inhibit proliferation and induce apoptosis of cancer cells: the effects of doxycycline and gemcitabine. Sci Rep 10(1):4363. https://doi.org/10.1038/s41598-020-61381-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ali I, Alfarouk KO, Reshkin SJ, Ibrahim ME (2017) Doxycycline as potential anti-cancer agent. Anticancer Agents Med Chem 17(12):1617–1623. https://doi.org/10.2174/1871520617666170213111951

    Article  CAS  PubMed  Google Scholar 

  161. Markowska A, Kaysiewicz J, Markowska J, Huczyński A (2019) Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett 29(13):1549–1554. https://doi.org/10.1016/j.bmcl.2019.04.045

    Article  CAS  PubMed  Google Scholar 

  162. Han JJ, Kim TM, Jeon YK, Kim MK, Khwarg SI, Kim CW, Kim IH, Heo DS (2015) Long-term outcomes of first-line treatment with doxycycline in patients with previously untreated ocular adnexal marginal zone B cell lymphoma. Ann Hematol 94(4):575–581. https://doi.org/10.1007/s00277-014-2240-8

    Article  CAS  PubMed  Google Scholar 

  163. Scatena C, Roncella M, Di Paolo A, Aretini P, Menicagli M, Fanelli G, Marini C, Mazzanti CM, Ghilli M, Sotgia F, Lisanti MP, Naccarato AG (2018) Doxycycline, an inhibitor of mitochondrial biogenesis, effectively reduces cancer stem cells (CSCs) in early breast cancer patients: a clinical pilot study. Front Oncol 8:452. https://doi.org/10.3389/fonc.2018.00452

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhu C, Yan X, Yu A, Wang Y (2017) Doxycycline synergizes with doxorubicin to inhibit the proliferation of castration-resistant prostate cancer cells. Acta Biochim Biophys Sin (Shanghai) 49(11):999–1007. https://doi.org/10.1093/abbs/gmx097

    Article  CAS  Google Scholar 

  165. De Francesco EM, Bonuccelli G, Maggiolini M, Sotgia F, Lisanti MP (2017) Vitamin C and doxycycline: a synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget 8(40):67269–67286. https://doi.org/10.18632/oncotarget.18428

    Article  PubMed  PubMed Central  Google Scholar 

  166. Shi Y, Lim SK, Liang Q et al (2019) Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 567(7748):341–346. https://doi.org/10.1038/s41586-019-0993-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Martinez-Reyes I, Chandel NS (2020) Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11(1):102. https://doi.org/10.1038/s41467-019-13668-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vasan K, Werner M, Chandel NS (2020) Mitochondrial metabolism as a target for cancer therapy. Cell Metab 32(3):341–352. https://doi.org/10.1016/j.cmet.2020.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20(7):745–754. https://doi.org/10.1038/s41556-018-0124-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20. https://doi.org/10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  171. Iacobazzi V, Infantino V (2014) Citrate-new functions for an old metabolite. Biol Chem 395(4):387–399. https://doi.org/10.1515/hsz-2013-0271

    Article  CAS  PubMed  Google Scholar 

  172. Fiorito V, Chiabrando D, Petrillo S, Bertino F, Tolosano E (2020) The multifaceted role of heme in cancer. Front Oncol 9:1540. https://doi.org/10.3389/fonc.2019.01540

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162(3):552–563. https://doi.org/10.1016/j.cell.2015.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ducker GS, Rabinowitz JD (2017) One-carbon metabolism in health and disease. Cell Metab 25(1):27–42. https://doi.org/10.1016/j.cmet.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  175. Grasmann G, Mondal A, Leithner K (2021) Flexibility and adaptation of cancer cells in a heterogenous metabolic microenvironment. Int J Mol Sci 22(3):1476. https://doi.org/10.3390/ijms22031476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge SERB, CSIR, and GLA University, India.

Funding

This study was supported by a Grant (ECR/2016/001127) from Science and Engineering Research Board, India to AG and by a Calcutta University BI Grant to AG and CSIR Grant (No: 09/028(1127)/2019-EMR-I) to MB. We are also thankful to GLA University, Mathura for funding MR.

Author information

Authors and Affiliations

Authors

Contributions

AG conceptualized this topic. MR added her valuable comments. AG and MB collectively wrote this manuscript.

Corresponding author

Correspondence to Alok Ghosh.

Ethics declarations

Conflict of interest

The authors declared that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedi, M., Ray, M. & Ghosh, A. Active mitochondrial respiration in cancer: a target for the drug. Mol Cell Biochem 477, 345–361 (2022). https://doi.org/10.1007/s11010-021-04281-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04281-4

Keywords

Navigation