Skip to main content
Log in

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO2@NH2) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg·L−1, 90 °C) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McClements D J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances, 2020, 38: 107287

    Article  CAS  PubMed  Google Scholar 

  2. Manzano M, Vallet-Regi M. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634

    Article  CAS  Google Scholar 

  3. McNamara K, Tofail S A M. Nanoparticles in biomedical applications. Advances in Physics: X, 2017, 2(1): 54–88

    CAS  Google Scholar 

  4. Rizvi S A, Saleh A M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 2018, 26(1): 64–70

    Article  PubMed  Google Scholar 

  5. Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045–1057

    Article  CAS  Google Scholar 

  6. Modena M M, Ruhle B, Burg T P, Wuttke S. Nanoparticle characterization: what to measure? Advanced Materials, 2019, 31(32): 1901556

    Article  CAS  Google Scholar 

  7. Wu S H, Mou C Y, Lin H P. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 2013, 42(9): 3862–3875

    Article  CAS  PubMed  Google Scholar 

  8. Zhang C N, Dong Y, Gao J, Wang X L, Jiang Y J. Radial porous SiO2 nanoflowers potentiate the effect of antigen/adjuvant in antitumor immunotherapy. Frontiers of Chemical Science and Engineering, 2021, 15(5): 1296–1311

    Article  CAS  Google Scholar 

  9. Alharbi N S, Hu B, Hayat T, Rabah S O, Alsaedi A, Zhuang L, Wang X. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials. Frontiers of Chemical Science and Engineering, 2020, 14(6): 1124–1135

    Article  CAS  Google Scholar 

  10. Wu Q, Zhang J C, Wang S P, Chen B J, Feng Y J, Pei Y B, Yan Y, Tang L C, Qiu H Y, Wu L. Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating. Frontiers of Chemical Science and Engineering, 2020, 15(4): 969–983

    Article  CAS  Google Scholar 

  11. Binks B P, Rodrigues J A, Frith W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir, 2007, 23(7): 3626–3636

    Article  CAS  PubMed  Google Scholar 

  12. Binks B P, Rodrigues J A. Enhanced stabilization of emulsions due to surfactant-induced nanoparticle flocculation. Langmuir, 2007, 23(14): 7436–7439

    Article  CAS  PubMed  Google Scholar 

  13. Zhao M W, Wang R Y, Dai C L, Wu X P, Wu Y R, Dai Y J, Wu Y N. Adsorption behaviour of surfactant-nanoparticles at the gas-liquid interface: influence of the alkane chain length. Chemical Engineering Science, 2019, 206: 203–211

    Article  CAS  Google Scholar 

  14. Lian P, Jia H, Wei X, Han Y G, Wang Q X, Dai J J, Wang D F, Wang S Y, Tian Z H, Yan H. Effects of zwitterionic surfactant adsorption on the component distribution in the crude oil droplet: a molecular simulation study. Fuel, 2021, 283: 119252

    Article  CAS  Google Scholar 

  15. Liu J P, Dai Z W, Li C J, Lv K H, Huang X B, Sun J S, Wei B. Inhibition of the hydration expansion of sichuan gas shale by adsorption of compounded surfactants. Energy & Fuels, 2019, 33(7): 6020–6026

    Article  CAS  Google Scholar 

  16. Ngai T, Behrens S H, Auweter H. Novel emulsions stabilized by pH and temperature sensitive microgels. Chemical Communications, 2005, 3: 331–333

    Article  CAS  Google Scholar 

  17. Alcazar-Vara L A, Zamudio-Rivera L S, Buenrostro-Gonzalez E. Multifunctional evaluation of a new supramolecular complex in enhanced oil recovery, removal/control of organic damage, and heavy crude oil viscosity reduction. Industrial & Engineering Chemistry Research, 2015, 54(32): 7766–7776

    Article  CAS  Google Scholar 

  18. Williams G T, Haynes C J E, Fares M, Caltagirone C, Hiscock J R, Gale P A. Advances in applied supramolecular technologies. Chemical Society Reviews, 2021, 50(4): 2737–2763

    Article  CAS  PubMed  Google Scholar 

  19. Huang T, Meng F, Qi L M. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin. Langmuir, 2010, 26(10): 7582–7589

    Article  CAS  PubMed  Google Scholar 

  20. Liu R, Lu Y Y, Pu W F, Lian K L, Sun L, Du D J, Song Y Y, Sheng J J. Low-energy emulsification of oil-in-water emulsions with self-regulating mobility via a nanoparticle surfactant. Industrial & Engineering Chemistry Research, 2020, 59(41): 18396–18411

    Article  CAS  Google Scholar 

  21. Almahfood M, Bai B. The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications. Journal of Petroleum Science Engineering, 2018, 171: 196–210

    Article  CAS  Google Scholar 

  22. Olayiwola S O, Dejam M. Interfacial energy for solutions of nanoparticles, surfactants, and electrolytes. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(4): e16891

    Article  CAS  Google Scholar 

  23. Bollineni P K, Dordzie G, Olayiwola S O, Dejam M. An experimental investigation of the viscosity behavior of solutions of nanoparticles, surfactants, and electrolytes. Physics of Fluids, 2021, 33(2): 026601

    Article  CAS  Google Scholar 

  24. Zhu G L, Huang Z H, Xu Z Y, Yan L T. Tailoring interfacial nanoparticle organization through entropy. Accounts of Chemical Research, 2018, 51(4): 900–909

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z Y, Guo R H, Xu G X, Huang Z H, Yan L T. Entropy-mediated mechanical response of the interfacial nanoparticle patterning. Nano Letters, 2014, 14(12): 6910–6916

    Article  CAS  PubMed  Google Scholar 

  26. Xu G X, Huang Z H, Chen P Y, Cui T Q, Zhang X H, Miao B, Yan L T. Optimal reactivity and improved self-healing capability of structurally dynamic polymers grafted on Janus nanoparticles governed by chain stiffness and spatial organization. Small, 2017, 13(13): 1603155

    Article  CAS  Google Scholar 

  27. Jia H, Dai J J, Huang P, Han Y G, Wang Q X, He J, Song J Y, Wei X, Yan H, Liu D X. Application of novel amphiphilic Janus-SiO2 nanoparticles for an efficient demulsification of crude oil/water emulsions. Energy & Fuels, 2020, 34(11): 13977–13984

    Article  CAS  Google Scholar 

  28. Walther A, Mueller A H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013, 113(7): 5194–5261

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y J, Hu J K, Yu X T, Xu X Y, Gao Y, Li H M, Liang F X. Preparation of Janus-type catalysts and their catalytic performance at emulsion interface. Journal of Colloid and Interface Science, 2017, 490: 357–364

    Article  CAS  PubMed  Google Scholar 

  30. Yoon K Y, Son H A, Choi S K, Kim J W, Sung W M, Kim H T. Core flooding of complex nanoscale colloidal dispersions for enhanced oil recovery by in situ formation of stable oil-in-water Pickering emulsions. Energy & Fuels, 2016, 30(4): 2628–2635

    Article  CAS  Google Scholar 

  31. Yin T H, Yang Z H, Zhang F F, Lin M Q, Zhang J, Dong Z X. Assembly and mechanical response of amphiphilic Janus nanosheets at oil-water interfaces. Journal of Colloid and Interface Science, 2021, 583: 214–221

    Article  CAS  PubMed  Google Scholar 

  32. Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir, 2006, 22(23): 9495–9499

    Article  CAS  PubMed  Google Scholar 

  33. Jia H, Leng X, Lian P, Han Y G, Wang Q X, Wang S Y, Sun T N, Liang Y P, Huang P, Lv K H. pH-Switchable IFT variations and emulsions based on the dynamic noncovalent surfactant/salt assembly at the water/oil interface. Soft Matter, 2019, 15(27): 5529–5536

    Article  PubMed  Google Scholar 

  34. Olayiwola S O, Dejam M. Comprehensive experimental study on the effect of silica nanoparticles on the oil recovery during alternating injection with low salinity water and surfactant into carbonate reservoirs. Journal of Molecular Liquids, 2021, 325: 115178

    Article  CAS  Google Scholar 

  35. Olayiwola S O, Dejam M. Synergistic interaction of nanoparticles with low salinity water and surfactant during alternating injection into sandstone reservoirs to improve oil recovery and reduce formation damage. Journal of Molecular Liquids, 2020, 317: 114228

    Article  CAS  Google Scholar 

  36. Jia H, Huang P, Han Y G, Wang Q X, Wei X, Huang W J, Dai J J, Song J Y, Yan H, Liu D X. Synergistic effects of Janus graphene oxide and surfactants on the heavy oil/water interfacial tension and their application to enhance heavy oil recovery. Journal of Molecular Liquids, 2020, 314: 113791

    Article  CAS  Google Scholar 

  37. Bucki R, Niemirowicz-Laskowska K, Deptula P, Wilczewska A Z, Misiak P, Durnas B, Fiedoruk K, Piktel E, Mystkowska J, Janmey P A. Susceptibility of microbial cells to the modified PIP2-binding sequence of gelsolin anchored on the surface of magnetic nanoparticles. Journal of Nanobiotechnology, 2019, 17(1): 81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gomez-Chavarin M, Prado-Prone G, Padilla P, Santos J R, Gutierrez-Ospina G, Garcia-Macedo J A. Dopamine released from TiO2 semicrystalline lattice implants attenuates motor symptoms in rats treated with 6-hydroxydopamine. ACS Omega, 2019, 4(5): 7953–7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao Z G, Wang L S, Lv C Y, Guo S L, Lu X X, Tao L W, Duan Q S, Yang Q Y, Luo Z G. Preparation and characterization of pH-responsive Pickering emulsion stabilized by grafted carboxymethyl starch nanoparticles. International Journal of Biological Macro-molecules, 2020, 143: 401–412

    Article  CAS  Google Scholar 

  40. Satpute S K, Mone N S, Das P, Banat I M, Banpurkar A G. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology, 2019, 19(1): 39

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ma X K, Lee N H, Oh H J, Kim J W, Rhee C K, Park K S, Kim S J. Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 358(1–3): 172–176

    Article  CAS  Google Scholar 

  42. Wang L, Yu Y B, He H, Zhang Y, Qin X B, Wang B Y. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation. Scientific Reports, 2017, 7(1): 12845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schroder A, Sprakel J, Schroen K, Berton-Carabin C C. Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties. Soft Matter, 2017, 13(17): 3190–3198

    Article  PubMed  Google Scholar 

  44. Shi S Q, Wang Y Q, Liu Y H, Wang L. A new method for calculating the viscosity of W/O and O/W emulsion. Journal of Petroleum Science Engineering, 2018, 171: 928–937

    Article  CAS  Google Scholar 

  45. Zhang Y, Lu H S, Wang B G, Wang N, Liu D F. pH-responsive non-Pickering emulsion stabilized by dynamic covalent bond surfactants and nano-SiO2 particles. Langmuir, 2020, 36(50): 15230–15239

    Article  CAS  PubMed  Google Scholar 

  46. Ali N, Bilal M, Khan A, Ali F, Iqbal H M N. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Science of the Total Environment, 2020, 704: 135391

    Article  CAS  PubMed  Google Scholar 

  47. Karthick A, Roy B, Chattopadhyay P. A review on the application of chemical surfactant and surfactant foam for remediation of petroleum oil contaminated soil. Journal of Environmental Management, 2019, 243: 187–205

    Article  CAS  PubMed  Google Scholar 

  48. Pal N, Verma A, Ojha K, Mandal A. Nanoparticle-modified gemini surfactant foams as efficient displacing fluids for enhanced oil recovery. Journal of Molecular Liquids, 2020, 310: 113193

    Article  CAS  Google Scholar 

  49. Zhong X, Li C C, Pu H, Zhou Y X, Zhao J X J. Increased nonionic surfactant efficiency in oil recovery by integrating with hydrophilic silica nanoparticle. Energy & Fuels, 2019, 33(9): 8522–8529

    Article  CAS  Google Scholar 

  50. Tcholakova S, Denkov N D, Lips A. Comparison of solid particles, globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical Physics, 2008, 10(12): 1608–1627

    Article  CAS  PubMed  Google Scholar 

  51. Dai C L, Li H, Zhao M W, Wu Y N, You Q, Sun Y P, Zhao G, Xu K. Emulsion behavior control and stability study through decorating silica nano-particle with dimethyldodecylamine oxide at n-heptane/water interface. Chemical Engineering Science, 2018, 179: 73–82

    Article  CAS  Google Scholar 

  52. Jia H, Wu H Y, Wei X, Han Y G, Wang Q X, Song J Y, Dai J J, Yan H, Liu D X. Investigation on the effects of AlOOH nanoparticles on sodium dodecylbenzenesulfonate stabilized o/w emulsion stability for EOR. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 603: 125278

    Article  CAS  Google Scholar 

  53. Xue W, Yang H Q, Du Z P. Synthesis of pH-responsive inorganic Janus nanoparticles and experimental investigation of the stability of their Pickering emulsions. Langmuir, 2017, 33(39): 10283–10290

    Article  CAS  PubMed  Google Scholar 

  54. Yao C J, Lei G L, Hou J, Xu X H, Wang D, Steenhuis T S. Enhanced oil recovery using micron-size polyacrylamide elastic microspheres: underlying mechanisms and displacement experiments. Industrial & Engineering Chemistry Research, 2015, 54(43): 10925–10934

    Article  CAS  Google Scholar 

  55. Xie K, Cao B, Lu X G, Jiang W D, Zhang Y B, Li Q, Song K P, Liu J X, Wang W, Lv J L, Na R. Matching between the diameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an offshore oilfield. Journal of Petroleum Science Engineering, 2019, 177: 558–569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the National Natural Science Foundation of China (Grant No. 51974344), the Natural Science Foundation of Shandong Provincial (Grant No. ZR2019MEE077), and the Fundamental Research Funds for the Central Universities (Grant No. 19CX02064A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Jia or Pan Huang.

Electronic Supplementary Material

11705_2021_2095_MOESM1_ESM.pdf

The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Dai, J., Wang, T. et al. The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery. Front. Chem. Sci. Eng. 16, 1101–1113 (2022). https://doi.org/10.1007/s11705-021-2095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2095-1

Keywords

Navigation