Skip to main content
Log in

Discriminative and quantitative analysis of norepinephrine and epinephrine by surface-enhanced Raman spectroscopy with gold nanoparticle suspensions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique capable of increasing the Raman signal of an analyte using specific nanostructures. The close contact between those nanostructures, usually a suspension of nanoparticles, and the molecule of interest produces an important exaltation of the intensity of the Raman signal. Even if the exaltation leads to an improvement of Raman spectroscopy sensitivity, the complexity of the SERS signal and the numbers of parameters to be controlled allow the use of SERS for detection rather than quantification. The aim of this study was to develop a robust discriminative and quantitative analysis in accordance with pharmaceutical standards. In this present work, we develop a discriminative and quantitative analysis based on the previous optimized parameters obtained by the design of experiments fixed for norepinephrine (NOR) and extended to epinephrine (EPI) which are two neurotransmitters with very similar structures. Studying the short evolution of the Raman signal intensity over time coupled with chemometric tools allowed the identification of outliers and their removal from the data set. The discriminant analysis showed an excellent separation of EPI and NOR. The comparative analysis of the data showed the superiority of the multivariate analysis after logarithmic transformation. The quantitative analysis allowed the development of robust quantification models from several gold nanoparticle batches with limits of quantification of 32 µg/mL for NOR and below 20 µg/mL for EPI even though no Raman signal is observable for such concentrations. This study improves SERS analysis over ultrasensitive detection for discrimination and quantification using a handheld Raman spectrometer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Michelet A, Boiret M, Lemhachheche F, Malec L, Tfayli A, Ziemons E. Utilisation de la spectrométrie Raman dans le domaine pharmaceutique. STP Pharma Prat. 2013;23(2):97–117.

    CAS  Google Scholar 

  2. Lê L, Berge M, Tfayli A, Prognon P, Caudron E. Discriminative and quantitative analysis of antineoplastic Taxane drugs using a handheld Raman spectrometer. BioMed Res Int. 2018;2018:1–7.

    Article  Google Scholar 

  3. Shende C, Smith W, Brouillette C, Farquharson S. Drug stability analysis by Raman spectroscopy. Pharmaceutics déc. 2014;6(4):651–62.

    Article  Google Scholar 

  4. Parachalil DR, McIntyre J, Byrne HJ. Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances. Anal Bioanal Chem. 2020;412(9):1993–2007.

    Article  PubMed  Google Scholar 

  5. Lê L, Berge M, Tfayli A, BailletGuffroy A, Prognon P, Dowek A, et al. Quantification of gemcitabine intravenous drugs by direct measurement in chemotherapy plastic bags using a handheld Raman spectrometer. Talanta. 2019;196:376–80.

    Article  PubMed  Google Scholar 

  6. Mansouri MA, Sacré P-Y, Coïc L, De Bleye C, Dumont E, Bouklouze A, et al. Quantitation of active pharmaceutical ingredient through the packaging using Raman handheld spectrophotometers: a comparison study. Talanta. 2020;207:120306.

    Article  CAS  PubMed  Google Scholar 

  7. Lê LMM, Berge M, Tfayli A, Zhou J, Prognon P, Baillet-Guffroy A, et al. Rapid discrimination and quantification analysis of five antineoplastic drugs in aqueous solutions using Raman spectroscopy. Eur J Pharm Sci. 2018;111:158–66.

    Article  PubMed  Google Scholar 

  8. Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP. SERS: materials, applications, and the future. Mater Today. 2012;15(1–2):16–25.

    Article  CAS  Google Scholar 

  9. Kneipp K, Kneipp H, Manoharan R, Itzkan I, Dasari RR, Feld MS. Near-infrared surface-enhanced Raman scattering can detect single molecules and observe ‘hot’ vibrational transitions. J Raman Spectrosc. 1998;29(8):743–7.

    Article  CAS  Google Scholar 

  10. Cailletaud J, De Bleye C, Dumont E, Sacré P-Y, Netchacovitch L, Gut Y, et al. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field. J Pharm Biomed Anal. 2018;147:458–72.

    Article  CAS  PubMed  Google Scholar 

  11. Goodacre R, Graham D, Faulds K. Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC Trends Anal Chem. 2018;102:359–68.

    Article  CAS  Google Scholar 

  12. Muhamadali H, Watt A, Xu Y, Chisanga M, Subaihi A, Jones C, et al. Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Front Chem [Internet]. 2019 [cité 29 mai 2021];7. Disponible sur: https://www.frontiersin.org/articles/https://doi.org/10.3389/fchem.2019.00412/full

  13. Junior BRA, Soares FLF, Ardila JA, Durango LGC, Forim MR, Carneiro RL. Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2018;188:589–95.

    Article  CAS  PubMed  Google Scholar 

  14. Markina NE, Goryacheva IY, Markin AV. Sample pretreatment and SERS-based detection of ceftriaxone in urine. Anal Bioanal Chem. 2018;410(8):2221–7.

    Article  CAS  PubMed  Google Scholar 

  15. Alharbi O, Xu Y, Goodacre R. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Anal Bioanal Chem. 2015;407(27):8253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Bleye C, Dumont E, Rozet E, Sacré P-Y, Chavez P-F, Netchacovitch L, et al. Determination of 4-aminophenol in a pharmaceutical formulation using surface enhanced Raman scattering: From development to method validation. Talanta. 2013;15(116):899–905.

    Article  Google Scholar 

  17. Alharbi O, Xu Y, Goodacre R. Detection and quantification of the opioid tramadol in urine using surface enhanced Raman scattering. Analyst. 2015;140(17):5965–70.

    Article  CAS  PubMed  Google Scholar 

  18. Dowek A, Lê LMM, Rohmer T, Legrand F-X, Remita H, Lampre I, et al. A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents. Talanta. 2020;217:121040.

    Article  CAS  PubMed  Google Scholar 

  19. Fan M, Andrade GF, Brolo AG. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta. 2011;693(1–2):7–25.

    Article  CAS  PubMed  Google Scholar 

  20. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.

    Article  Google Scholar 

  21. Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86(17):3391–5.

    Article  CAS  Google Scholar 

  22. Shi L, Buhler E, Boué F, Carn F. How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question. J Colloid Interface Sci. 2017;492:191–8.

    Article  CAS  PubMed  Google Scholar 

  23. Li W, Zhao X, Yi Z, Glushenkov AM, Kong L. Plasmonic substrates for surface enhanced Raman scattering. Anal Chim Acta. 2017;984:19–41.

    Article  CAS  PubMed  Google Scholar 

  24. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ. Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal Methods. 2014;6(22):9116–23.

    Article  CAS  Google Scholar 

  25. Fisk H, Westley C, Turner NJ, Goodacre R. Achieving optimal SERS through enhanced experimental design: achieving SERS by enhanced experimental design. J Raman Spectrosc. 2016;47(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  26. Cailletaud J, De Bleye C, Dumont E, Sacré P-Y, Gut Y, Leblanc N, et al. Detection of low dose of piroxicam polymorph in pharmaceutical tablets by surface-enhanced Raman chemical imaging (SER-CI) and multivariate analysis. Int J Pharm. 2019;574:118913.

    Article  PubMed  Google Scholar 

  27. Eliasson C, Lorén A, Murty KVGK, Josefson M, Käll M, Abrahamsson J, et al. Multivariate evaluation of doxorubicin surface-enhanced Raman spectra. Spectrochim Acta A Mol Biomol Spectrosc. 2001;57(9):1907–15.

    Article  CAS  PubMed  Google Scholar 

  28. Deng B, Luo X, Zhang M, Ye L, Chen Y. Quantitative detection of acyclovir by surface enhanced Raman spectroscopy using a portable Raman spectrometer coupled with multivariate data analysis. Colloids Surf B Biointerfaces. 2019;173:286–94.

    Article  CAS  PubMed  Google Scholar 

  29. Weng S, Yu S, Dong R, Zhao J, Liang D. Detection of Pirimiphos-Methyl in Wheat Using Surface-Enhanced Raman Spectroscopy and Chemometric Methods. Mol Basel Switz. 2019;24(9):1691.

    CAS  Google Scholar 

  30. Dijkstra RJ, Scheenen WJJM, Dam N, Roubos EW, ter Meulen JJ. Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. J Neurosci Methods. 2007;159(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  31. Moody AS, Sharma B. Multi-metal, Multi-wavelength Surface-Enhanced Raman Spectroscopy Detection of Neurotransmitters. ACS Chem Neurosci. 2018;9(6):1380–7.

    Article  CAS  PubMed  Google Scholar 

  32. Shi C-X, Chen Z-P, Chen Y, Liu Q, Yu R-Q. Quantification of dopamine in biological samples by surface-enhanced Raman spectroscopy: Comparison of different calibration models. Chemom Intell Lab Syst. 2017;169:87–93.

    Article  CAS  Google Scholar 

  33. Hubert Ph, Nguyen-Huu J-J, Boulanger B, Chapuzet E, Chiap P, Cohen N, et al. Harmonization of strategies for the validation of quantitative analytical procedures: A SFSTP proposal – Part II. J Pharm Biomed Anal. 2007;45(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  34. Eilers, Paul HC, Hans FM Boelens. Baseline correction with asymmetric least squares smoothing. Leiden University Medical Centre Report 1.1 (2005):5.

  35. Olivieri AC. Practical guidelines for reporting results in single-and multi-component analytical calibration: a tutorial. Anal Chim Acta. 2015;868:10–22.

    Article  CAS  PubMed  Google Scholar 

  36. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30.

    Article  CAS  Google Scholar 

  37. Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17(3):166–73.

    Article  CAS  Google Scholar 

  38. Lee NS, Hsieh YZ, Paisley RF, Morris MD. Surface-enhanced Raman spectroscopy of the catecholamine neurotransmitters and related compounds. Anal Chem. 1988;60(5):442–6.

    Article  CAS  PubMed  Google Scholar 

  39. Moody AS, Baghernejad PC, Webb KR, Sharma B. Surface enhanced spatially offset Raman spectroscopy detection of neurochemicals through the skull. Anal Chem. 2017;89(11):5688–92.

    Article  CAS  PubMed  Google Scholar 

  40. Munro CH, Smith WE, Garner M, Clarkson J, White PC. Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir. 1995;11(10):3712–20.

    Article  CAS  Google Scholar 

  41. Park J-W, Shumaker-Parry JS. Structural study of citrate layers on gold nanoparticles: role of intermolecular interactions in stabilizing nanoparticles. J Am Chem Soc. 2014;136(5):1907–21.

    Article  CAS  PubMed  Google Scholar 

  42. Moody AS, Payne TD, Barth BA, Sharma B. Surface-enhanced spatially-offset Raman spectroscopy (SESORS) for detection of neurochemicals through the skull at physiologically relevant concentrations. Analyst. 2020;145(5):1885–93.

    Article  CAS  PubMed  Google Scholar 

  43. Moody AS, Sharma B. Multi-metal, multi-wavelength surface-enhanced Raman spectroscopy detection of neurotransmitters. ACS Chem Neurosci. 2018;9(6):1380–7.

    Article  CAS  PubMed  Google Scholar 

  44. Vander Ende E, Bourgeois MR, Henry A-I, Chávez JL, Krabacher R, Schatz GC, et al. Physicochemical Trapping of Neurotransmitters in Polymer-Mediated Gold Nanoparticle Aggregates for Surface-Enhanced Raman Spectroscopy. Anal Chem. 2019;91(15):9554–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support for a Nan’eau microscope from Ecole Polytechnique, IDEX Paris-Saclay, Equipex Morphoscope 2, and DGA. They also thank the “Centre Interdisciplinaire de Microscopie électronique de l’X” (CIMEX). Finally, they are grateful to the Fondation ARC (French foundation for cancer research) for the financial support to Marion Berge.

Funding

This work has been supported by the Fondation ARC pour la recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Dowek.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowek, A., Berge, M., Prognon, P. et al. Discriminative and quantitative analysis of norepinephrine and epinephrine by surface-enhanced Raman spectroscopy with gold nanoparticle suspensions. Anal Bioanal Chem 414, 1163–1176 (2022). https://doi.org/10.1007/s00216-021-03743-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03743-4

Keywords

Navigation