Skip to main content
Log in

Preliminary Evaluation of Three Species of Ligninolytic Fungi for Their Possible Incorporation in Vertical Flow Treatment Wetlands for the Treatment of Tequila Vinasse

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate and compare three species of ligninolytic fungi (Trametes versicolor, Bjerkandera adusta, and Phanerochaete chrysosporium) in laboratory-scale columns with respect to their efficiency for the treatment of raw tequila vinasse, in order to assess the feasibility of incorporating this type of fungi in vertical flow treatment wetlands. The following parameters were analyzed at the inlets and outlets of the columns: total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), biological oxygen demand (BOD5), pH, electrical conductivity (EC), true and apparent color, total nitrogen (TN), nitrites (NO2), nitrates (NO3), and total phosphates. The performance of the 3 fungi was very similar (p > 0.05), although T. versicolor showed a trend towards higher efficiencies for the removal of TSS, TN, total phosphates, and COD. The removal efficiencies of TSS were 73.1%, 80.2%, and 78.8% for B. adusta, T. versicolor, and P. Chrysosporium, respectively; for TN removal, the efficiencies were 64.7%, 65.7%, and 60.6%, respectively. The higher removal percentage for COD (10.2%) was obtained in the column with T. versicolor. These results demonstrate the tolerance of the fungi to raw tequila vinasse, their role in reducing pollutant concentrations, and the feasibility of incorporating them into vertical flow treatment wetlands to increase the efficiency of these systems for the treatment of tequila stillage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed, P. M., Pajot, H. F., de Figueroa, L. I. C., & Gusils, C. H. (2018). Sustainable bioremediation of sugarcane vinasse using autochthonous macrofungi. Journal of Environmental Chemical Engineering, 6(4), 5177–5185. https://doi.org/10.1016/j.jece.2018.08.007

    Article  CAS  Google Scholar 

  • Alvillo Rivera, A. J. (2016). Tratamiento de vinazas de tequila con hongos basidiomicetos. (Master degree), Universidad Nacional Autónoma de México, Mexico.

  • APHA-AWWA-WEF. (2005). Standard methods for the examination of water and wastewater. Washington, DC.

  • Arellano-García, L., Velázquez-Fernández, J. B., Macías-Muro, M., & Marino-Marmolejo, E. N. (2021). Continuous hydrogen production and microbial community profile in the dark fermentation of tequila vinasse: Response to increasing loading rates and immobilization of biomass. Biochemical Engineering Journal, 172, 108049. https://doi.org/10.1016/j.bej.2021.108049

    Article  CAS  Google Scholar 

  • Arun-Kumar, M., Sheik Abdullah, S., & P., S.-K., Dheeba, B., & Mathumitha, C. (2008). Comparitive study on potentiality of bacteria and fungi in bioremediation and decolorization of molasses spent wash. Journal of Pure and Applied Microbiology, 2(2), 393–400.

    Google Scholar 

  • Beever, R. E., & Burns, D. J. W. (1980). Phosphorus uptake, storage and utilization by fungi. Advances in Botanical Research, 8, 127–219.

    Article  CAS  Google Scholar 

  • Castillo-Monroy, J., Godínez, L. A., Robles, I., & Estrada-Vargas, A. (2021). Study of a coupled adsorption/electro-oxidation process as a tertiary treatment for tequila industry wastewater. Environmental Science and Pollution Research, 28(19), 23699–23706. https://doi.org/10.1007/s11356-020-11031-4

    Article  CAS  Google Scholar 

  • Cerboneschi, M., Corsi, M., Bianchini, R., Bonanni, M., & Tegli, S. (2015). Decolorization of acid and basic dyes: Understanding the metabolic degradation and cell-induced adsorption/precipitation by Escherichia coli. Applied Microbiology and Biotechnology, 99(19), 8235–8245. https://doi.org/10.1007/s00253-015-6648-4

    Article  CAS  Google Scholar 

  • CRT. (2021). Consejo Regulador del Tequila (Tequila Regulatory Council) Datos y estadísticas. Retrieved from https://www.crt.org.mx/EstadisticasCRTweb/

  • Dahiya, J., Singh, D., & Nigam, P. (2001). Decolourisation of synthetic and spentwash melanoidins using the white-rot fungus Phanerochaete chrysosporium JAG-40. Bioresource Technology, 78(1), 95–98. https://doi.org/10.1016/s0960-8524(00)00119-x

    Article  CAS  Google Scholar 

  • Del Toro, A., Tejeda, A., & Zurita, F. (2019). Addition of corn cob in the free drainage zone of partially saturated vertical wetlands planted with I. sibirica for total nitrogen removal—A pilot-scale study. Water, 11(10), 2151. doi:https://doi.org/10.3390/w11102151

  • Del Toro, A., & Zurita, F. (2021). Changes in the nitrification-denitrification capacity of pilot-scale partially saturated vertical flow wetlands (with corncob in the free-drainage zone) after two years of operation. International Journal of Phytoremediation, 23(8), 829–836. https://doi.org/10.1080/15226514.2020.1859987

    Article  CAS  Google Scholar 

  • Díaz-Vázquez, D., Carrillo-Nieves, D., Orozco-Nunnelly, D. A., Senés-Guerrero, C., & Gradilla-Hernández, M. S. (2021). An integrated approach for the assessment of environmental sustainability in agro-industrial waste management practices: the case of the tequila industry. Frontiers in Environmental Science, 9(229). doi:https://doi.org/10.3389/fenvs.2021.682093

  • España-Gamboa, E., Vicent, T., Font, X., Dominguez-Maldonado, J., Canto-Canché, B., & Alzate-Gaviria, L. (2017). Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor. Journal of Biological Engineering, 11, 6–6. https://doi.org/10.1186/s13036-016-0042-3

    Article  CAS  Google Scholar 

  • Estrada-Arriaga, E. B., Reynoso-Deloya, M. G., Guillén-Garcés, R. A., Falcón-Rojas, A., & García-Sánchez, L. (2021). Enhanced methane production and organic matter removal from tequila vinasses by anaerobic digestion assisted via bioelectrochemical power-to-gas. Bioresource Technology, 320, 124344. https://doi.org/10.1016/j.biortech.2020.124344

    Article  CAS  Google Scholar 

  • Fernandes, J. M. C., Sousa, R. M. O. F., Fraga, I., Sampaio, A., Amaral, C., Bezerra, R. M. F., & Dias, A. A. (2020). Fungal biodegradation and multi-level toxicity assessment of vinasse from distillation of winemaking by-products. Chemosphere, 238, 124572. https://doi.org/10.1016/j.chemosphere.2019.124572

    Article  CAS  Google Scholar 

  • Ferreira, L. F. R., Aguiar, M. M., Messias, T. G., Pompeu, G. B., Lopez, A. M. Q., Silva, D. P., & Monteiro, R. T. (2011). Evaluation of sugar-cane vinasse treated with Pleurotus sajor-caju utilizing aquatic organisms as toxicological indicators. Ecotoxicology and Environmental Safety, 74(1), 132–137. https://doi.org/10.1016/j.ecoenv.2010.08.042

    Article  CAS  Google Scholar 

  • Franco-León, J., & d. J., Arriola-Guevara, E., Suárez-Hernández, L. A., Toriz, G., Guatemala-Morales, G., & Corona-González, R. I. (2021). Influence of supplemented nutrients in tequila vinasses for hydrogen and polyhydroxybutyrate production by photofermentation with Rhodopseudomonas pseudopalustris. Bioresource Technology, 329, 124865. https://doi.org/10.1016/j.biortech.2021.124865

    Article  CAS  Google Scholar 

  • García, I. G., Venceslada, J. L. B., Peña, P. R. J., & Gómez, E. R. (1997). Biodegradation of phenol compounds in vinasse using Aspergillus terreus and Geotrichum candidum. Water Research, 31(8), 2005–2011. https://doi.org/10.1016/S0043-1354(97)00014-6

    Article  Google Scholar 

  • Ghosh Ray, S., & Ghangrekar, M. M. (2019). Comprehensive review on treatment of high-strength distillery wastewater in advanced physico-chemical and biological degradation pathways. International Journal of Environmental Science and Technology, 16(1), 527–546. https://doi.org/10.1007/s13762-018-1786-8

    Article  CAS  Google Scholar 

  • Ho, Y.-C., Chua, S.-C., & Chong, F.-K. (2020). Coagulation-flocculation technology in water and wastewater treatment Handbook of Research on Resource Management for Pollution and Waste Treatment (pp. 432–457): IGI Global.

  • Kobayashi, M., Matsuo, Y., Takimoto, A., Suzuki, S., Maruo, F., & Shoun, H. (1996). Denitrification, a novel type of respiratory metabolism in fungal mitochondrion. Journal of Biological Chemistry, 271(27), 16263–16267. https://doi.org/10.1074/jbc.271.27.16263

    Article  CAS  Google Scholar 

  • Kuuskeri, J., Häkkinen, M., Laine, P., Smolander, O.-P., Tamene, F., Miettinen, S., … Lundell, T. (2016). Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: Growth on spruce wood and decay effect on lignocellulose. Biotechnology for Biofuels, 9(1), 192. https://doi.org/10.1186/s13068-016-0608-9

  • López-López, A., Davila-Vazquez, G., León-Becerril, E., Villegas-García, E., & Gallardo-Valdez, J. (2010). Tequila vinasses: Generation and full scale treatment processes. Reviews in Environmental Science and Bio/technology, 9(2), 109–116. https://doi.org/10.1007/s11157-010-9204-9

    Article  CAS  Google Scholar 

  • López López, A., & Contreras Ramos, S. M. (2015). Tratamiento de Efluentes y Aprovechamiento de Residuos. In A. C. Gschaedler Mathis, B. Rodríguez Garay, R. Prado Ramírez, & J. L. Flores Montaño (Eds.), Ciencia y tecnología del tequila: avances y perspectivas (Vol. 2do Edición). Mexico: Grupo Promueve Compañias SC.

  • Lundell, T. K., Mäkelä, M. R., de Vries, R. P., & Hildén, K. S. (2014). Chapter eleven - Genomics, lifestyles and future prospects of wood- decay and litter decomposing basidiomycota. In F. M. Marti (Ed.), Advances in botanical research; No. 70 (Vol. 70, pp. 329–370). London: Elsevier Academic Press.

  • Martinez-Orozco, E., Gortares-Moroyoqui, P., Santiago-Olivares, N., Napoles-Armenta, J., Ulloa-Mercado, R. G., De la Mora-Orozco, C., … Meza-Escalante, E. R. (2020). Tequila still distillation fractioned residual streams for use in biorefinery. Energies, 13(23), 6222. doi:https://doi.org/10.3390/en13236222

  • Martínez, N. B., Tejeda, A., Del Toro, A., Sánchez, M. P., & Zurita, F. (2018). Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon. Science of the Total Environment, 645, 524–532. https://doi.org/10.1016/j.scitotenv.2018.07.147

    Article  CAS  Google Scholar 

  • Mattila, H. K., Mäkinen, M., & Lundell, T. (2020). Hypoxia is regulating enzymatic wood decomposition and intracellular carbohydrate metabolism in filamentous white rot fungus. Biotechnology for Biofuels, 13(1), 26. https://doi.org/10.1186/s13068-020-01677-0

    Article  CAS  Google Scholar 

  • Minussi, R. C., de Moraes, S. G., Pastore, G. M., & Durán, N. (2001). Biodecolorization screening of synthetic dyes by four white-rot fungi in a solid medium: Possible role of siderophores. Letters in Applied Microbiology, 33(1), 21–25. https://doi.org/10.1046/j.1472-765x.2001.00943.x

    Article  CAS  Google Scholar 

  • Morozkina, E. V., & Kurakov, A. V. (2007). Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: A review. Applied Biochemistry and Microbiology, 43(5), 544–549. https://doi.org/10.1134/S0003683807050079

    Article  CAS  Google Scholar 

  • Nyanhongo, G. S., Gübitz, G., Sukyai, P., Leitner, C., Haltrich, D., & Ludwig, R. (2007). Oxidoreductases from Trametes spp in biotechnology: A wealth of catalytic activity. Food Technology and Biotechnology, 45(3), 250–268.

    CAS  Google Scholar 

  • Olguín, E. J., Sánchez-Galván, G., González-Portela, R. E., & López-Vela, M. (2008). Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata. Water Research, 42(14), 3659–3666. https://doi.org/10.1016/j.watres.2008.05.015

    Article  CAS  Google Scholar 

  • Osińska-Jaroszuk, M., Sulej, J., Jaszek, M., & Jaroszuk-Ściseł, J. (2020). Applications of fungal polysaccharides Reference Module in Life Sciences: Elsevier

  • Pant, D., & Adholeya, A. (2010). Development of a novel fungal consortium for the treatment of molasses distillery wastewater. The Environmentalist, 30(2), 178–182. https://doi.org/10.1007/s10669-010-9255-z

    Article  Google Scholar 

  • Pickard, M. A., Roman, R., Tinoco, R., & Vazquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Applied and Environment Microbiology, 65(9), 3805–3809. https://doi.org/10.1128/aem.65.9.3805-3809.1999

    Article  CAS  Google Scholar 

  • Ratna, S., Rastogi, S., & Kumar, R. (2021). Current trends for distillery wastewater management and its emerging applications for sustainable environment. Journal of Environmental Management, 290, 112544. https://doi.org/10.1016/j.jenvman.2021.112544

    Article  CAS  Google Scholar 

  • Rau, U. (2004). Glucans secreted by fungi. Turkish Electronic Journal, 2, 30–36.

    Google Scholar 

  • Retes-Pruneda, J. L., Davila-Vazquez, G., Medina-Ramírez, I., Chavez-Vela, N. A., Lozano-Alvarez, J. A., Alatriste-Mondragon, F., & Jauregui-Rincon, J. (2014). High removal of chemical and biochemical oxygen demand from tequila vinasses by using physicochemical and biological methods. Environmental Technology, 35(13–16), 1773–1784. https://doi.org/10.1080/09593330.2014.882960

    Article  CAS  Google Scholar 

  • Rodríguez-Romero, Jd. J., Aceves-Lara, C. A., Silva, C. F., Gschaedler, A., Amaya-Delgado, L., & Arrizon, J. (2020). 2-Phenylethanol and 2-phenylethylacetate production by nonconventional yeasts using tequila vinasses as a substrate. Biotechnology Reports, 25, e00420. https://doi.org/10.1016/j.btre.2020.e00420

    Article  Google Scholar 

  • Sánchez, M. P., Sulbarán-Rangel, B. C., Tejeda, A., & Zurita, F. (2020). Evaluation of three lignocellulosic wastes as a source of biodegradable carbon for denitrification in treatment wetlands. International Journal of Environmental Science and Technology, 17(12), 4679–4692. https://doi.org/10.1007/s13762-020-02815-9

    Article  CAS  Google Scholar 

  • Shoun, H., Kim, D.-H., Uchiyama, H., & Sugiyama, J. (1992). Denitrification by fungi. FEMS Microbiology Letters, 94(3), 277–281. https://doi.org/10.1111/j.1574-6968.1992.tb05331.x

    Article  CAS  Google Scholar 

  • Spennati, F. (2018). Use of fungi and bacteria for the removal of recalcitrant compounds from tannery wastewater (PhD. degree Thesis). Department of Civil and Environmental Engineering, University of Florence.

  • Stefanakis, A., Akratos, C. S., & Tsihrintzis, V. A. (2014). Chapter 8 - Modeling of vertical flow constructed wetlands. In A. Stefanakis, C. S. Akratos, & V. A. Tsihrintzis (Eds.), Vertical flow constructed wetlands (pp. 165–179). Elsevier.

    Chapter  Google Scholar 

  • Strong, P. J., & Burgess, J. E. (2007). Bioremediation of a wine distillery wastewater using white rot fungi and the subsequent production of laccase. Water Science and Technology, 56(2), 179–186. https://doi.org/10.2166/wst.2007.487

    Article  CAS  Google Scholar 

  • Takaya, N. (2002). Dissimilatory nitrate reduction metabolisms and their control in fungi. Journal of Bioscience and Bioengineering, 94(6), 506–510. https://doi.org/10.1016/S1389-1723(02)80187-6

    Article  CAS  Google Scholar 

  • Tudzynski, B. (2014). Nitrogen regulation of fungal secondary metabolism in fungi. Frontiers in Microbiology, 5, 656–656. https://doi.org/10.3389/fmicb.2014.00656

    Article  Google Scholar 

  • Vymazal, J. (2009). The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35(1), 1–17. https://doi.org/10.1016/j.ecoleng.2008.08.016

    Article  Google Scholar 

  • Vymazal, J., & Kröpfelová, L. (2008). Wastewater treatment in constructed wetlands with horizontal sub-surface flow (Vol. 14). Springer science & business media.

    Book  Google Scholar 

  • Weber-Scannell, P. K., & Duffy, L. K. (2007). Effects of total dissolved solids on aquatic organisms: A review of literature and recommendation for salmonid species. American Journal of Environmental Sciences, 3(1), 1–6. https://doi.org/10.3844/ajessp.2007.1.6

    Article  CAS  Google Scholar 

  • Weisi, L., & Chaocheng, Z. (2012). Nitrogen removal by a fungal aerobic denitrifier of Penicillium strain. Biotechnology for Biofuels, 11, 296–306. https://doi.org/10.3923/biotech.2012.296.306

    Article  CAS  Google Scholar 

  • Wongwicharn, A., McNeil, B., & Harvey, L. M. (1999). Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnology and Bioengineering, 65(4), 416–424. https://doi.org/10.1002/(sici)1097-0290(19991120)65:4%3c416::aid-bit6%3e3.0.co;2-z

    Article  CAS  Google Scholar 

  • Zurita, F., & Carreón-Álvarez, A. (2014). Performance of three pilot-scale hybrid constructed wetlands for total coliforms and Escherichia coli removal from primary effluent – A 2-year study in a subtropical climate. Journal of Water and Health, 13(2), 446–458. https://doi.org/10.2166/wh.2014.135

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the National Council of Science and Technology (CONACYT) of Mexico for granting the doctoral scholarship to Anderson A. Ramírez Ramírez.

Funding

This study was funded by the State Council of Science and Technology of the state of Jalisco (COECYTJAL) in the 2019 call “Convocatoria Fondo de Desarrollo Científico de Jalisco (FODECIJAL) para Atender Problemas Estatales 2019.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zurita-Martínez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Ramírez, A.A., Sulbarán-Rangel, B.C., Jáuregui-Rincón, J. et al. Preliminary Evaluation of Three Species of Ligninolytic Fungi for Their Possible Incorporation in Vertical Flow Treatment Wetlands for the Treatment of Tequila Vinasse. Water Air Soil Pollut 232, 456 (2021). https://doi.org/10.1007/s11270-021-05412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05412-9

Keywords

Navigation