Skip to main content

Advertisement

Log in

Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of an automatic method of identifying microplastic particles within live cells and organisms is crucial for high-throughput analysis of their biodistribution in toxicity studies. State-of-the-art technique in the data analysis tasks is the application of deep learning algorithms. Here, we propose the approach of polystyrene microparticle classification differing only in pigmentation using enhanced dark-field microscopy and a residual neural network (ResNet). The dataset consisting of 11,528 particle images has been collected to train and evaluate the neural network model. Human skin fibroblasts treated with microplastics were used as a model to study the ability of ResNet for classifying particles in a realistic biological experiment. As a result, the accuracy of the obtained classification algorithm achieved up to 93% in cell samples, indicating that the technique proposed will be a potent alternative to time-consuming spectral-based methods in microplastic toxicity research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, Simonneau A, Binet S, Galop D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci. 2019;12:339–44. https://doi.org/10.1038/s41561-019-0335-5.

    Article  CAS  Google Scholar 

  2. Guo J-J, Huang X-P, Xiang L, Wang Y-Z, Li Y-W, Li H, Cai Q-Y, Mo C-H, Wong M-H. Source, migration and toxicology of microplastics in soil. Environ Int. 2020;137:105263. https://doi.org/10.1016/j.envint.2019.105263.

    Article  PubMed  CAS  Google Scholar 

  3. Hartmann NB, Hüffer T, Thompson RC, Hassellöv M, Verschoor A, Daugaard AE, Rist S, Karlsson T, Brennholt N, Cole M, Herrling MP, Hess MC, Ivleva NP, Lusher AL, Wagner M. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ Sci Technol. 2019;53:1039–47. https://doi.org/10.1021/acs.est.8b05297.

    Article  PubMed  CAS  Google Scholar 

  4. Boyle K, Örmeci B. Microplastics and nanoplastics in the freshwater and terrestrial environment: a review. Water. 2020;12:2633. https://doi.org/10.3390/w12092633.

    Article  Google Scholar 

  5. Padervand M, Lichtfouse E, Robert D, Wang C. Removal of microplastics from the environment A review. Environ Chem Lett. 2020;18:807–28. https://doi.org/10.1007/s10311-020-00983-1.

    Article  CAS  Google Scholar 

  6. Liu W, Zhang J, Liu H, Guo X, Zhang X, Yao X, Cao Z, Zhang T. A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms. Environ Int. 2021;146:106277. https://doi.org/10.1016/j.envint.2020.106277.

    Article  PubMed  CAS  Google Scholar 

  7. Cheung PK, Fok L. Evidence of microbeads from personal care product contaminating the sea. Mar Pollut Bull. 2016;109:582–5. https://doi.org/10.1016/j.marpolbul.2016.05.046.

    Article  PubMed  CAS  Google Scholar 

  8. Lusher A. Microplastics in the marine environment: distribution, interactions and effects. In: Marine Anthropogenic Litter. Springer International Publishing, Cham; 2015. pp. 245–307.

  9. US Congress. Public Law 114–114. Dec 28 Microbead-Free Waters Act of 2015. (129 STAT. 3129). https://www.congress.gov/114/plaws/publ114/PLAW-114publ114.pdf. Accessed 19 Jul 2021.

  10. Kentin E, Kaarto H. An EU ban on microplastics in cosmetic products and the right to regulate. Rev Eur Comp Int Environ Law. 2018;27:254–66. https://doi.org/10.1111/reel.12269.

    Article  Google Scholar 

  11. McDevitt JP, Criddle CS, Morse M, Hale RC, Bott CB, Rochman CM. Addressing the issue of microplastics in the wake of the Microbead-Free Waters Act—A New Standard Can Facilitate Improved Policy. Environ Sci Technol. 2017;51:6611–7. https://doi.org/10.1021/acs.est.6b05812.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang K, Shi H, Peng J, Wang Y, Xiong X, Wu C, Lam PKS. Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management. Sci Total Environ. 2018;630:1641–53. https://doi.org/10.1016/j.scitotenv.2018.02.300.

    Article  PubMed  CAS  Google Scholar 

  13. Ivar do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. Environ Pollut. 2014;185:352–64. https://doi.org/10.1016/j.envpol.2013.10.036.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang B, Yang X, Chen L, Chao J, Teng J, Wang Q. Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. J Chem Technol Biotechnol. 2020;95:2052–68. https://doi.org/10.1002/jctb.6334.

    Article  CAS  Google Scholar 

  15. Enyoh CE, Verla AW, Verla EN, Ibe FC, Amaobi CE. Airborne microplastics: a review study on method for analysis, occurrence, movement and risks. Environ Monit Assess. 2019;191:668. https://doi.org/10.1007/s10661-019-7842-0.

    Article  PubMed  CAS  Google Scholar 

  16. Rezania S, Park J, Md Din MF, Mat Taib S, Talaiekhozani A, Kumar Yadav K, Kamyab H. Microplastics pollution in different aquatic environments and biota: a review of recent studies. Mar Pollut Bull. 2018;133:191–208. https://doi.org/10.1016/j.marpolbul.2018.05.022.

    Article  PubMed  CAS  Google Scholar 

  17. Cho Y, Shim WJ, Jang M, Han GM, Hong SH. Abundance and characteristics of microplastics in market bivalves from South Korea. Environ Pollut. 2019;245:1107–16. https://doi.org/10.1016/j.envpol.2018.11.091.

    Article  PubMed  CAS  Google Scholar 

  18. Wright SL, Kelly FJ. Plastic and human health: a micro issue? Environ Sci Technol. 2017;51:6634–47. https://doi.org/10.1021/acs.est.7b00423.

    Article  PubMed  CAS  Google Scholar 

  19. Oßmann BE, Sarau G, Holtmannspötter H, Pischetsrieder M, Christiansen SH, Dicke W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018;141:307–16. https://doi.org/10.1016/j.watres.2018.05.027.

    Article  PubMed  CAS  Google Scholar 

  20. Prata JC. Airborne microplastics: consequences to human health? Environ Pollut. 2018;234:115–26. https://doi.org/10.1016/j.envpol.2017.11.043.

    Article  PubMed  CAS  Google Scholar 

  21. Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE. Human consumption of microplastics. Environ Sci Technol. 2019;53:7068–74. https://doi.org/10.1021/acs.est.9b01517.

    Article  PubMed  CAS  Google Scholar 

  22. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ. 2020;702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455.

    Article  PubMed  CAS  Google Scholar 

  23. Hwang J, Choi D, Han S, Choi J, Hong J. An assessment of the toxicity of polypropylene microplastics in human derived cells. Sci Total Environ. 2019;684:657–69. https://doi.org/10.1016/j.scitotenv.2019.05.071.

    Article  PubMed  CAS  Google Scholar 

  24. Lei L, Liu M, Song Y, Lu S, Hu J, Cao C, Xie B, Shi H, He D. Polystyrene (nano)microplastics cause size-dependent neurotoxicity, oxidative damage and other adverse effects in Caenorhabditis elegans. Environ Sci Nano. 2018;5:2009–20. https://doi.org/10.1039/C8EN00412A.

    Article  CAS  Google Scholar 

  25. Liu L, Xu K, Zhang B, Ye Y, Zhang Q, Jiang W. Cellular internalization and release of polystyrene microplastics and nanoplastics. Sci Total Environ. 2021;779:146523. https://doi.org/10.1016/j.scitotenv.2021.146523.

    Article  PubMed  CAS  Google Scholar 

  26. Hao M, Flynn K, Nien-Shy C, Jester BE, Winkler M, Brown DJ, La Schiazza O, Bille J, Jester JV. In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg two-photon laser ophthalmoscope. Exp Eye Res. 2010;91:308–14. https://doi.org/10.1016/j.exer.2010.06.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P, Li S. Oxidative stress induces monocyte‐to‐myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med. 2020:10. https://doi.org/10.1002/ctm2.41

  28. Della Torre C, Bergami E, Salvati A, Faleri C, Cirino P, Dawson KA, Corsi I. Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environ Sci Technol. 2014;48:12302–11. https://doi.org/10.1021/es502569w.

    Article  PubMed  CAS  Google Scholar 

  29. Li S, Wang T, Guo J, Dong Y, Wang Z, Gong L, Li X. Polystyrene microplastics disturb the redox homeostasis, carbohydrate metabolism and phytohormone regulatory network in barley. J Hazard Mater. 2021;415:125614. https://doi.org/10.1016/j.jhazmat.2021.125614.

    Article  PubMed  CAS  Google Scholar 

  30. Schampera C, Wolinska J, Bachelier JB, de Souza Machado AA, Rosal R, González-Pleiter M, Agha R. Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton. Environ Pollut. 2021;277:116781. https://doi.org/10.1016/j.envpol.2021.116781.

    Article  PubMed  CAS  Google Scholar 

  31. Nolan JP, Yang L, Heyde HC. Reagents and instruments for multiplexed analysis using microparticles. Curr Protoc Cytom. 2006:37. https://doi.org/10.1002/0471142956.cy1308s37

  32. Lacroix R, Robert S, Poncelet P, Dignat-George F. Overcoming limitations of microparticle measurement by flow cytometry. Semin Thromb Hemost. 2010;36:807–18. https://doi.org/10.1055/s-0030-1267034.

    Article  PubMed  Google Scholar 

  33. Bangs LB. Recent uses of microspheres in diagnostic tests and assays. In: Novel Approaches in Biosensors and Rapid Diagnostic Assays. Springer US, Boston, MA; 2000. pp. 245–263.

  34. Shang X, Lu J, Feng C, Ying Y, He Y, Fang S, Lin Y, Dahlgren R, Ju J. Microplastic (1 and 5 μm) exposure disturbs lifespan and intestine function in the nematode Caenorhabditis elegans. Sci Total Environ. 2020;705:135837. https://doi.org/10.1016/j.scitotenv.2019.135837.

    Article  PubMed  CAS  Google Scholar 

  35. Kögel T, Bjorøy Ø, Toto B, Bienfait AM, Sanden M. Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci Total Environ. 2020;709:136050. https://doi.org/10.1016/j.scitotenv.2019.136050.

    Article  PubMed  CAS  Google Scholar 

  36. Wu D, Wang T, Wang J, Jiang L, Yin Y, Guo H. Size-dependent toxic effects of polystyrene microplastic exposure on Microcystis aeruginosa growth and microcystin production. Sci Total Environ. 2021;761:143265. https://doi.org/10.1016/j.scitotenv.2020.143265.

    Article  PubMed  CAS  Google Scholar 

  37. Liu Z, Li Y, Sepúlveda MS, Jiang Q, Jiao Y, Chen Q, Huang Y, Tian J, Zhao Y. Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. Sci Total Environ. 2021;766:144249. https://doi.org/10.1016/j.scitotenv.2020.144249.

    Article  PubMed  CAS  Google Scholar 

  38. Guimarães ATB, Estrela FN, Pereira PS, de Andrade Vieira JE, de Lima Rodrigues AS, Silva FG, Malafaia G. Toxicity of polystyrene nanoplastics in Ctenopharyngodon idella juveniles: a genotoxic, mutagenic and cytotoxic perspective. Sci Total Environ. 2021;752:141937. https://doi.org/10.1016/j.scitotenv.2020.141937.

    Article  PubMed  CAS  Google Scholar 

  39. Jin H, Ma T, Sha X, Liu Z, Zhou Y, Meng X, Chen Y, Han X, Ding J. Polystyrene microplastics induced male reproductive toxicity in mice. J Hazard Mater. 2021;401:123430. https://doi.org/10.1016/j.jhazmat.2020.123430.

    Article  PubMed  CAS  Google Scholar 

  40. Park JW, Lee SJ, Hwang DY, Seo S. Removal of microplastics via tannic acid-mediated coagulation and in vitro impact assessment. RSC Adv. 2021;11:3556–66. https://doi.org/10.1039/D0RA09645H.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan L, Yu D, Zhang Y, Zhu C, Yin Q, Hu Y, Zhang X, Yue R, Xiong X. Polystyrene microplastics-triggered mitophagy and oxidative burst via activation of PERK pathway. Sci Total Environ. 2021;781:146753. https://doi.org/10.1016/j.scitotenv.2021.146753.

    Article  CAS  Google Scholar 

  42. Goodman KE, Hare JT, Khamis ZI, Hua T, Sang Q-XA. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chem Res Toxicol. 2021;34:1069–81. https://doi.org/10.1021/acs.chemrestox.0c00486.

    Article  PubMed  CAS  Google Scholar 

  43. Shim WJ, Hong SH, Eo SE. Identification methods in microplastic analysis: a review. Anal Methods. 2017;9:1384–91. https://doi.org/10.1039/C6AY02558G.

    Article  CAS  Google Scholar 

  44. Gimiliani GT, Fornari M, Redígolo MM, Willian Vega Bustillos JO, Moledo de Souza Abessa D, Faustino Pires MA. Simple and cost-effective method for microplastic quantification in estuarine sediment: a case study of the Santos and São Vicente Estuarine System. Case Stud Chem Environ Eng. 2020;2:100020. https://doi.org/10.1016/j.cscee.2020.100020.

    Article  Google Scholar 

  45. Dey TK, Uddin ME, Jamal M. Detection and removal of microplastics in wastewater: evolution and impact. Environ Sci Pollut Res. 2021;28:16925–47. https://doi.org/10.1007/s11356-021-12943-5.

    Article  CAS  Google Scholar 

  46. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS. Microplastic ingestion by zooplankton. Environ Sci Technol. 2013;47:6646–55. https://doi.org/10.1021/es400663f.

    Article  PubMed  CAS  Google Scholar 

  47. Maes T, Jessop R, Wellner N, Haupt K, Mayes AG. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep. 2017;7:44501. https://doi.org/10.1038/srep44501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bhargava R, Wang S-Q, Koenig JL. FTIR microspectroscopy of polymeric systems. In: Liquid Chromatography / FTIR Microspectroscopy / Microwave Assisted Synthesis. Advances in Polymer Science. Springer, Berlin, Heidelberg; 2003. pp 137–91. https://doi.org/10.1007/b11052.

  49. Wright SL, Levermore JM, Kelly FJ. Raman spectral imaging for the detection of inhalable microplastics in ambient particulate matter samples. Environ Sci Technol. 2019;53:8947–56. https://doi.org/10.1021/acs.est.8b06663.

    Article  PubMed  CAS  Google Scholar 

  50. Fang C, Sobhani Z, Zhang X, Gibson CT, Tang Y, Naidu R. Identification and visualisation of microplastics/ nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser? Water Res. 2020;183:116046. https://doi.org/10.1016/j.watres.2020.116046.

    Article  PubMed  CAS  Google Scholar 

  51. Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87:6032–40. https://doi.org/10.1021/acs.analchem.5b00495.

    Article  PubMed  CAS  Google Scholar 

  52. Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12:563. https://doi.org/10.1071/EN14205.

    Article  CAS  Google Scholar 

  53. Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal Methods. 2017;9:1499–511. https://doi.org/10.1039/C6AY02476A.

    Article  CAS  Google Scholar 

  54. Piarulli S, Sciutto G, Oliveri P, Malegori C, Prati S, Mazzeo R, Airoldi L. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method. Chemosphere. 2020;260:127655. https://doi.org/10.1016/j.chemosphere.2020.127655.

    Article  PubMed  CAS  Google Scholar 

  55. Zhu C, Kanaya Y, Nakajima R, Tsuchiya M, Nomaki H, Kitahashi T, Fujikura K. Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments. Environ Pollut. 2020;263:114296. https://doi.org/10.1016/j.envpol.2020.114296.

    Article  PubMed  CAS  Google Scholar 

  56. Banerjee A, Shelver WL. Micro- and nanoplastic induced cellular toxicity in mammals: a review. Sci Total Environ. 2021;755:142518. https://doi.org/10.1016/j.scitotenv.2020.142518.

    Article  PubMed  CAS  Google Scholar 

  57. Yong C, Valiyaveettil S, Tang B. Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health. 2020;17:1509. https://doi.org/10.3390/ijerph17051509.

    Article  PubMed Central  CAS  Google Scholar 

  58. Nigamatzyanova L, Fakhrullin R. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: a Caenorhabditis elegans study. Environ Pollut. 2021;271:116337. https://doi.org/10.1016/j.envpol.2020.116337.

    Article  PubMed  CAS  Google Scholar 

  59. Ng W, Minasny B, McBratney A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Sci Total Environ. 2020;702:134723. https://doi.org/10.1016/j.scitotenv.2019.134723.

    Article  PubMed  CAS  Google Scholar 

  60. Lorenzo-Navarro J, Castrillón-Santana M, Gómez M, Herrera A, Marín-Reyes PA. Automatic counting and classification of microplastic particles. In: Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2018. pp. 646–652.

  61. Yurtsever M, Yurtsever U. Use of a convolutional neural network for the classification of microbeads in urban wastewater. Chemosphere. 2019;216:271–80. https://doi.org/10.1016/j.chemosphere.2018.10.084.

    Article  PubMed  CAS  Google Scholar 

  62. Chaczko Z, Wajs-Chaczko P, Tien D, Haidar Y. Detection of microplastics using machine learning. In: 2019 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2019. pp. 1–8.

  63. Hackley VA, Clogston JD. Measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. NIST special publication 1200-6. NCI Hub. 2007. https://doi.org/10.6028/NIST.SP.1200-6.

  64. Akhatova F, Danilushkina A, Kuku G, Saricam M, Culha M, Fakhrullin R. Simultaneous intracellular detection of plasmonic and non-plasmonic nanoparticles using dark-field hyperspectral microscopy. Bull Chem Soc Jpn. 2018;91:1640–5. https://doi.org/10.1246/bcsj.20180198.

    Article  CAS  Google Scholar 

  65. Kruse FA, Lefkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ. 1993;44:145–63. https://doi.org/10.1016/0034-4257(93)90013-N.

    Article  Google Scholar 

  66. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, Wiegraebe W, Singh S, Becker T, Caicedo JC, Carpenter AE. Cell Profiler 3.0: next-generation image processing for biology. PLOS Biol. 2018;16:e2005970. https://doi.org/10.1371/journal.pbio.2005970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Zamora-Perez P, Tsoutsi D, Xu R, Rivera-Gil P. Hyperspectral-enhanced dark field microscopy for single and collective nanoparticle characterization in biological environments. Materials (Basel). 2018;11:243. https://doi.org/10.3390/ma11020243.

    Article  CAS  Google Scholar 

  68. Cai H, Yang Z, Cao X, Xia W, Xu X. A new iterative triclass thresholding technique in image segmentation. IEEE Trans Image Process. 2014;23:1038–46. https://doi.org/10.1109/TIP.2014.2298981.

    Article  PubMed  Google Scholar 

  69. Otsu N. A Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9:62–6. https://doi.org/10.1109/TSMC.1979.4310076.

    Article  Google Scholar 

  70. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9:611–29. https://doi.org/10.1007/s13244-018-0639-9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T. Recent advances in convolutional neural networks. Pattern Recognit. 2018;77:354–77. https://doi.org/10.1016/j.patcog.2017.10.013.

    Article  Google Scholar 

  72. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. pp. 770–778.

  73. Monti RP, Tootoonian S, Cao R. Avoiding degradation in deep feed-forward networks by phasing out skip-connections. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, editors. Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science. Springer, Cham; 2018. pp 447–56. https://doi.org/10.1007/978-3-030-01424-7_44.

  74. Desarda A. ResNet-builder. In: GitHub Repos. 2020. https://github.com/Akashdesarda/ResNet-builder. Accessed 19 Jul 2021.

  75. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Leibe B, Matas J, Sebe N, Welling M., editors. Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science. Springer, Cham; 2016. pp 630–45. https://doi.org/10.1007/978-3-319-46493-0_38.

  76. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. TensorFlow: a system for large-scale machine learning. In: Proceedings of OSDI ’16: 12th USENIX Symposium on Operating Systems Design and Implementation. 2016. pp. 265–283.

  77. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Eng. 2007;9:90–5. https://doi.org/10.1109/MCSE.2007.55.

    Article  Google Scholar 

  78. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  79. McKinney W. Data structures for statistical computing in Python. In: Proceedings of the 9th Python in Science Conference (SciPy 2010). 2010. pp. 56–61.

  80. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke C, Oliphant TE. Array programming with NumPy. Nature. 2020;585:357–62. https://doi.org/10.1038/s41586-020-2649-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Waskom M. seaborn: statistical data visualization. J Open Source Softw. 2021;6:3021. https://doi.org/10.21105/joss.03021.

    Article  Google Scholar 

  82. Ishmukhametov I, Nigamatzyanova L, Fakhrullina G, Fakhrullin R. ResNet for Microplastic Classification. Zenodo. 2021. 10.5281/ZENODO.5521226

  83. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27:861–74. https://doi.org/10.1016/j.patrec.2005.10.010.

    Article  Google Scholar 

  84. Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–51. https://doi.org/10.1016/j.jconrel.2016.06.017.

    Article  PubMed  CAS  Google Scholar 

  85. Weiss T, Semmler L, Millesi F, Mann A, Haertinger M, Salzmann M, Radtke C. Automated image analysis of stained cytospins to quantify Schwann cell purity and proliferation. PLoS One. 2020;15:e0233647. https://doi.org/10.1371/journal.pone.0233647.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Win KY, Choomchuay S, Hamamoto K, Raveesunthornkiat M. Comparative study on automated cell nuclei segmentation methods for cytology pleural effusion images. J Healthc Eng. 2018;2018:1–14. https://doi.org/10.1155/2018/9240389.

    Article  Google Scholar 

  87. Feurer M, Hutter F. Hyperparameter optimization. In: Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Springer, Cham., 2019. pp. 3–33.

  88. Magoulas GD, Vrahatis MN, Androulakis GS. Improving the convergence of the backpropagation algorithm using learning rate adaptation methods. Neural Comput. 1999;11:1769–96. https://doi.org/10.1162/089976699300016223.

    Article  PubMed  CAS  Google Scholar 

  89. Paget V, Dekali S, Kortulewski T, Grall R, Gamez C, Blazy K, Aguerre-Chariol O, Chevillard S, Braun A, Rat P, Lacroix G. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS One. 2015;10:e0123297. https://doi.org/10.1371/journal.pone.0123297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Musa S, Florea D, Wyss HM, Huyghe JM. Convection associated with exclusion zone formation in colloidal suspensions. Soft Matter. 2016;12:1127–32. https://doi.org/10.1039/C5SM01502B.

    Article  PubMed  CAS  Google Scholar 

  91. Mehta N, Shaik S, Devireddy R, Gartia MR. Single-cell analysis using hyperspectral imaging modalities. J Biomech Eng. 2018:140. https://doi.org/10.1115/1.4038638

  92. Fakhrullina GI, Akhatova FS, Lvov YM, Fakhrullin RF. Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci Nano. 2015;2:54–9. https://doi.org/10.1039/C4EN00135D.

    Article  CAS  Google Scholar 

  93. Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-Berry D, Pirela SV, Deloid G, Demokritou P, Luanpitpong S, Rojanasakul Y, Wang L. Evaluation of tumorigenic potential of CeO2 and Fe2O3 engineered nanoparticles by a human cell in vitro screening model. NanoImpact. 2017;6:39–54. https://doi.org/10.1016/j.impact.2016.11.001.

    Article  PubMed  Google Scholar 

  94. Kang EB, Cho H, Islamy MZA, In I, Park SY. Photo-switchable spiropyran immobilized polystyrene beads using catechol chemistry. Surf Interface Anal. 2017;49:759–65. https://doi.org/10.1002/sia.6220.

    Article  CAS  Google Scholar 

  95. Chatterjee S, Guha N, Krishnan S, Singh AK, Mathur P, Rai DK. Selective and recyclable Congo Red dye adsorption by spherical Fe3O4 nanoparticles functionalized with 1,2,4,5-benzenetetracarboxylic acid. Sci Rep. 2020;10:111. https://doi.org/10.1038/s41598-019-57017-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Balu S, Uma K, Pan G-T, Yang T, Ramaraj S. Degradation of Methylene Blue dye in the presence of visible light using SiO2@α-Fe2O3 nanocomposites deposited on SnS2 flowers. Materials (Basel). 2018;11:1030. https://doi.org/10.3390/ma11061030.

    Article  CAS  Google Scholar 

  97. Nosrati R, Olad A, Shakoori S. Preparation of an antibacterial, hydrophilic and photocatalytically active polyacrylic coating using TiO2 nanoparticles sensitized by graphene oxide. Mater Sci Eng C. 2017;80:642–51. https://doi.org/10.1016/j.msec.2017.07.004.

    Article  CAS  Google Scholar 

Download references

Funding

The work was funded by the Russian Science Foundation grant 21–73-00097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rawil Fakhrullin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 444 kb)

Supplementary file2 (MOV 21662 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishmukhametov, I., Nigamatzyanova, L., Fakhrullina, G. et al. Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study. Anal Bioanal Chem 414, 1297–1312 (2022). https://doi.org/10.1007/s00216-021-03749-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03749-y

Keywords

Navigation