Skip to main content
Log in

Existence and concentration behavior of solutions for the logarithmic Schrödinger–Bopp–Podolsky system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the following logarithmic Schrödinger–Bopp–Podolsky system

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon ^2\Delta u+V(x)u-\phi u=u \log u^2,&{} \text {in}~{\mathbb {R}}^{3},\\ -\varepsilon ^2\Delta \phi +\varepsilon ^4\Delta ^2\phi =4\pi u^2,~~~~~~~~~~~&{}\text {in}~{\mathbb {R}}^{3}, \end{array}\right. } \end{aligned}$$

where \(\varepsilon \) is a small positive parameter and \(V(x)\in C({\mathbb {R}}^3,{\mathbb {R}})\). Under the global condition on potential V(x), we prove the existence of positive solution \(u_{\varepsilon }\in H^1({\mathbb {R}}^3)\) of above system for \(\varepsilon >0\) small enough by applying the Variational Methods developed by Szulkin for the functional which is a sum of a \(C^1\) functional with a convex lower semicontinuous functional. Moreover, we also investigate the concentration behavior of \(\{u_{\varepsilon }\}\) as \(\varepsilon \rightarrow 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bopp, F.: Eine Lineare Theorie des Elektrons. Ann. Phys. 430, 345–384 (1940)

    Article  MathSciNet  Google Scholar 

  2. Podolsky, B.: A generalized electrodynamics. Phys. Rev. 62, 68–71 (1942)

    Article  MathSciNet  Google Scholar 

  3. Frenkel, F.: \(4/3\) problem in classical electrodynamics. Phys. Rev. E 54, 5859–5862 (1996)

    Article  Google Scholar 

  4. d’venia, P., Siciliano, G.: Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. J. Differ. Equ. 267, 1025–1065 (2019)

  5. Bertin, M.C., Pimentel, B.M., Valccel, C.E., Zambrano, G.E.R.: Hamilton–Jacobi formalism for Podolskys electromagnetic theory on the null-plane. J. Math. Phys. 58, 082902 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bonin, C.A., Pimentel, B.M., Ortega, P.H.: Multipole Expansion in Generalized Electrodynamics. preprint, arXiv:1608.00902

  7. Bufalo, R., Pimentel, B.M., Soto, D.E.: Causal approach for the electron-positron scattering in generalized quantum electrodynamics. Phys. Rev. D 90, 085012 (2014)

    Article  Google Scholar 

  8. Bufalo, R., Pimentel, B.M., Soto, D.E.: Normalizability analysis of the generalized quantum electrodynamics from the causal point of view. Int. J. Mod. Phys. A 32, 1750165 (2017)

    Article  MathSciNet  Google Scholar 

  9. Yang, J., Chen, H.B., Liu, S.L.: The existence of nontrivial solution of a class of Schrödinger–Bopp–Podolsky system with critical growth. Bound. Value Prob. 2020, 144 (2020)

    Article  Google Scholar 

  10. Mascaro, B., Siciliano, G.: Positive solutions for a Schrödinger–Bopp–Podolsky system. arXiv:2009.08531v1 [math.AP] 17 Sep 2020

  11. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1983)

  12. Rabinowitz, P.H.: Minimax Methods in Critical Points Theory with Application to Differential Equations, CBMS Regional Conf. Ser. Math. vol. 65. Am. Math. Soc. Providence (1986)

  13. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  14. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. vol. 24, Birkhäuser Boston Inc., Boston (1996)

  15. Zloshchastiev, K.G.: Logarithmic nonlinearity in the theories of quantum gravity: origin of time and observational consequences. Grav. Cosmol. 16, 288–297 (2010)

    Article  MathSciNet  Google Scholar 

  16. d’Avenia, P., Montefusco, E., Squassina, M.: On the logarithmic Schrödinger equation. Commun. Contemp. Math. 16, 1350032 (2014)

  17. Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory. Math. Comput. Model. 32, 1377–1393 (2000)

    Article  Google Scholar 

  18. d’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207–5216 (2015)

  19. Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Cal. Var. Partial Differ. Equ. 54, 585–597 (2015)

    Article  Google Scholar 

  20. Szulkin, A.: Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 77–109 (1986)

  21. Tanaka, K., Zhang, C.: Multi-bump solutions for logarithmic Schrödinger. Cal. Var. Partial Differ. Equ. https://doi.org/10.1007/s00526-017-1122-z

  22. Ji, C., Szulkin, A.: A logarithmic Schrödinger equation with asymptotic conditions on the potential. J. Math. Anal. Appl. 437, 241–254 (2016)

  23. Alves, C.O., de Morais Filho, D.C.: Existence and concentration of positive solutions for a Schrödinger logarithmic equation. Z. Angew. Math. Phys. 69, 144 (2018)

    Article  Google Scholar 

  24. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Math. 14. AMS, Providence (2001)

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Anal. Inst. H. Poincaré, Sect. C 1, 223–253 (1984)

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China, Grant No. 11171220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China, Grant No. 11171220.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Jia, G. Existence and concentration behavior of solutions for the logarithmic Schrödinger–Bopp–Podolsky system. Z. Angew. Math. Phys. 72, 198 (2021). https://doi.org/10.1007/s00033-021-01633-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01633-4

Keywords

Mathematics Subject Classification

Navigation