Skip to main content
Log in

Optimal decay rates of the solution for generalized Poisson–Nernst–Planck–Navier–Stokes equations in \({\mathbb {R}}^3\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Cauchy problem of a generalized Poisson–Nernst–Planck–Navier–Stokes system in \({\mathbb {R}}^3\) will be considered in this article. Based on the spectral analysis and the energy method, under some assumptions of the initial data, we obtain the lower bound and upper bound decay rates of the solution, which shows that the solution will converge to its constant equilibrium state at the same \(L^2\)-decay rates as the linearized one and the convergence rates are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barcilon, V., Chen, D.P., Eisenberg, R.S., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57(3), 631–648 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bothe, D., Fischer, A., Saal, J.: Global well-posedness and stability of electrokinetic flows. SIAM J. Math. Anal. 46(2), 1263–1316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23(9), 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021,506 (2004)

  5. Chen, D.: A new Poisson-Nernst-Planck model with ion-water interactions for charge transport in ion channels. Bull. Math. Biol. 78(8), 1703–1726 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, D.P., Eisenberg, R.S.: Charges, currents, and potentials in ionic channels of one conformation. Biophys. J. 64, 1405–1421 (1993)

    Article  Google Scholar 

  7. Constantin, P., Ignatova, M.: On the Nernst-Planck-Navier-Stokes system. Arch. Ration. Mech. Anal. 232(3), 1379–1428 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17(5), 737–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, C., Zhao, J.H., Cui, S.B.: Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces. Nonlinear Anal. 73(7), 2088–2100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenberg, R.S.: Computing the field in proteins and channels. J. Membr. Biol. 150, 1–25 (1996)

    Article  Google Scholar 

  11. Eisenberg, R.S.: New Developments and Theoretical Studies of Proteins, vol. 7. World Scientific, Philadelphia (1996)

    Google Scholar 

  12. Eisenberg, R.S.: Ionic channels in biological membranes: electrostatic analysis of a natural nano-tube. Contemp. Phys. 39, 447–466 (1998)

    Article  Google Scholar 

  13. Eisenberg, R.S.: From structure to function in open ionic channels. J. Membr. Biol. 171, 1–24 (1999)

    Article  Google Scholar 

  14. Eisenberg, B., Liu, W.S.: Poisson-Nernst-Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38(6), 1932–1966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Forster, J.: Mathematical Modeling of Complex Fluids. The University of Würzburg, Thesis (2013)

    Google Scholar 

  16. Gasser, I., Levermore, C.D., Markowich, P.A., Schmeiser, C.: The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model. Eur. J. Appl. Math. 12(4), 497–512 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga, Y., Mizoguchi, N., Senba, T.: Asymptotic behavior of type I blowup solutions to a parabolic-elliptic system of drift-diffusion type. Arch. Ration. Mech. Anal. 201(2), 549–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerome, J.W.: Analysis of Charge Transport. A Mathematical Study of Semiconductor Devices, Springer, Berlin (1996)

    Book  Google Scholar 

  19. Jerome, J.W.: Analytical approaches to charge transport in a moving medium. Transp. Theory Stat. Phys. 31(4–6), 333–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jordan, P.C., Bacquet, R.J., McCammon, J.A., Tran, P.: How electrolyte shielding influences the electrical potential in transmembrane ion channels. Biophys. J. 55, 1041–1052 (1989)

    Article  Google Scholar 

  21. Ji, L.J., Liu, P., Xu, Z.L., Zhou, S.G.: Asymptotic analysis on dielectric boundary effects of modified Poisson-Nernst-Planck equations. SIAM J. Appl. Math. 78(3), 1802–1822 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jüngel, A., Peng, Y.J.: A hierarchy of hydrodynamic models for plasmas. Quasi-neutral limits in the drift-diffusion equations. Asymptot. Anal. 28(1), 49–73 (2001)

  23. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kobayashi, R., Kawashima, S.: Decay estimates and large time behavior of solutions to the drift-diffusion system. Funkcial. Ekvac. 51(3), 371–394 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D.L.: The Green’s function of the Navier-Stokes equations for gas dynamics in \({\mathbb{R}}^3\). Commun. Math. Phys. 257(3), 579–619 (2005)

    Article  Google Scholar 

  26. Li, F.C.: Quasineutral limit of the electro-diffusion model arising in electrohydrodynamics. J. Differ. Equ. 246(9), 3620–3641 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, T.C., Eisenberg, B.: A new approach to the Lennard-Jones potential and a new model: Pnp-steric equations. Commun. Math. Sci. 12(1), 149–173 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, T.C., Eisenberg, B.: Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects. Nonlinearity 28(7), 2053–2080 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, H.L., Matsumura, A., Zhang, G.J.: Optimal decay rate of the compressible Navier-Stokes-Poisson system in \({\mathbb{R}}^3\). Arch. Ration. Mech. Anal. 196(2), 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Q., Zhang, T., Zhao, J.H.: Well-posedness for the \(3D\) incompressible nematic liquid crystal system in the critical \(L^p\) framework. Discrete Contin. Dyn. Syst. 36(1), 371–402 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mock, M.S.: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5, 597–612 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma, H.T.: Global large solutions to the Navier-Stokes-Nernst-Planck-Poisson equations. Acta Appl. Math. 157, 129–140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Matsumura, K., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. 15, 337–342 (1979)

    MathSciNet  MATH  Google Scholar 

  34. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Vienna (1990)

    Book  MATH  Google Scholar 

  35. Nonner, W., Chen, D.P., Eisenberg, B.: Progress and prospects in permeation. J. Gen. Physiol. 113(6), 773–782 (1999)

    Article  Google Scholar 

  36. Park, J.H., Jerome, J.W.: Qualitative properties of steady-state Poisson-Nernst-Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Promislow, K., Stockie, J.M.: Adiabatic relaxation of convective-diffusive gas transport in a porous fuel cell electrode. SIAM J. Appl. Math. 62(1), 180–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ryham, R.: An Energetic Variational Approach to Mathematical Modeling of Charged Fluids: Charge Phases. Simulation and Well Posedness, Ph.D. thesis, The Pennsylvania State University, 206

  39. Schmuck, M.: Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. Math. Models Methods Appl. Sci. 19(6), 993–1015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tong, L.L., Tan, Z.: Optimal decay rates of the compressible Magneto-Micropolar fluids system in \({\mathbb{R}}^3\). Commun. Math. Sci. 17(4), 1109–1134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, S.: Quasineutral limit of the multi-dimensional drift-diffusion-Poisson models for semiconductors with p-n-junctions. Math. Models Methods Appl. Sci. 16(4), 537–557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, S., Jiang, L.M., Liu, C.D.: Quasi-neutral limit and the boundary layer problem of Planck-Nernst-Poisson-Navier-Stokes equations for electro-hydrodynamics. J. Differ. Equ. 267(6), 3475–3523 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Y., Liu, C., Tan, Z.: A generalized Poisson-Nernst-Planck-Navier-Stokes model on the fluid with the crowded charged particles: derivation and its well-posedness. SIAM J. Math. Anal. 48(5), 3191–3235 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Y., Liu, C., Tan, Z.: Well-posedness on a new hydrodynamic model of the fluid with the dilute charged particles. J. Differ. Equ. 262(1), 68–115 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, H., Markowich, P.A., Zheng, S.M.: Global existence and asymptotic behavior for a semiconductor drift-diffusion-Poisson model. Math. Models Methods Appl. Sci. 18(3), 443–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, S., Wang, K.: The mixed layer problem and quasi-neutral limit of the drift-diffusion model for semiconductors. SIAM J. Math. Anal. 44(2), 699–717 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wu, Z.G., Wang, W.K.: Green’s function and pointwise estimate for a generalized Poisson-Nernst-Planck-Navier-Stokes model in dimension three. ZAMM Z. Angew. Math. Mech. 98(7), 1066–1085 (2018)

    Article  MathSciNet  Google Scholar 

  48. Xu, S.X., Sheng, P., Liu, C.: An energetic variational approach for ion transport. Commun. Math. Sci. 12(4), 779–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao, J.H., Deng, C., Cui, S.B.: Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces. Differ. Equ. Appl. 3(3), 427–448 (2011)

    MathSciNet  MATH  Google Scholar 

  50. Zhang, G.J., Li, H.L., Zhu, C.J.: Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in \({\mathbb{R}}^3\). J. Differ. Equ. 250(2), 866–891 (2011)

    Article  MATH  Google Scholar 

  51. Zhang, Z., Yin, Z.Y.: Global well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in dimension two. Appl. Math. Lett. 40, 102–106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the National Natural Science Foundation of China (Grant No. 12001077), Chongqing University of Posts and Telecommunications startup fund (Grant No. A2018-128) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202000618). The second author was supported by the National Natural Science Foundation of China (Grant Nos. 11926316, 11531010).

Appendix A. Analytic tools

Appendix A. Analytic tools

Lemma A.1

Let \(r_1>1\), \(0\le r_2\le r_1\), then it holds that

$$\begin{aligned} \int \limits _0^t(1+t-s)^{-r_1}(1+s)^{-r_2}\mathrm{d}s\le C(r_1,r_2)(1+t)^{-r_2} \end{aligned}$$
(3.43)

where \(C(r_1,r_2)\) is defined as

$$\begin{aligned} C(r_1,r_2)=\displaystyle {\frac{2^{r_2+1}}{r_1-1}}. \end{aligned}$$

Proof

The proof can be seen in [8]. \(\square \)

Lemma A.2

For \(|\xi |\in [0, \eta ]\), we can derive from the conditions of Theorem 1.2 that

$$\begin{aligned} {\hat{U}}_0(0)\ne 0, \end{aligned}$$
(3.44)

and there exist some \({\bar{\xi }}_i\in (0,\xi )\), with \(i=1,2,3\), such that

$$\begin{aligned} {\hat{U}}_0(\xi )={\hat{U}}_0(0)+\frac{\partial {\hat{U}}_0({\bar{\xi }}_i)}{\partial \xi }\xi . \end{aligned}$$
(3.45)

Proof

We can refer to [40] for the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Tan, Z. Optimal decay rates of the solution for generalized Poisson–Nernst–Planck–Navier–Stokes equations in \({\mathbb {R}}^3\). Z. Angew. Math. Phys. 72, 200 (2021). https://doi.org/10.1007/s00033-021-01627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-021-01627-2

Keywords

Mathematics Subject Classification

Navigation