Skip to main content
Log in

Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The low cost and highly efficient construction of electrocatalysts has attracted significant attention owing to the use of clean and sustainable energy technologies. In this work, cobalt nanoparticle decorated N-doped carbons (Co@NC) are synthesized by the pyrolysis of a cobalt covalent organic framework under an inert atmosphere. The Co@NC demonstrates improved electrocatalytic capabilities compared to N-doped carbon without the addition of Co nanoparticles, indicating the important role of cobalt. The well-dispersed active sites (Co-Nx) and the synergistic effect between the carbon matrix and Co nanoparticles greatly enhance the electrocatalytic activity for the oxygen reduction reaction. In addition, the Co content has a significant effect on the catalytic activity. The resulting Co@NC-0.86 exhibits a superb electrocatalytic activity for the oxygen reduction reaction in an alkaline electrolyte in terms of the onset potential (0.90 V), half-wave potential (0.80 V) and the limiting current density (4.84 mA·cm−2), and a high selectivity, as well as a strong methanol tolerance and superior durability, these results are comparable to those of the Pt/C catalyst. Furthermore, the superior bifunctional activity of Co@NC-0.86 was also confirmed in a home-built Zn-air battery, signifying the possibility for application in electrode materials and in current energy conversion and storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H X, Liang J Y, Xia B W, Li Y, Du S F. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells. Frontiers of Chemical Science and Engineering, 2019, 13(4): 695–701

    Article  CAS  Google Scholar 

  2. Peng X F, Wang Z H, Wang Z, Pan Y X. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction. Frontiers of Chemical Science and Engineering, 2018, 12 (4): 790–797

    Article  CAS  Google Scholar 

  3. Hao R, Ren J T, Lv X W, Li W, Liu Y P, Yuan Z Y. N-Doped porous carbon hollow microspheres encapsulated with iron-based nano-composites as advanced bifunctional catalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2020, 49: 14–21

    Article  Google Scholar 

  4. Yin S H, Yang J, Han Y, Li G, Wan L Y, Chen Y H, Chen C, Qu X M, Jiang Y X, Sun S G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angewandte Chemie International Edition, 2020, 59(49): 21976–21979

    Article  CAS  PubMed  Google Scholar 

  5. Ren J T, Yuan Z Y. A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry. Journal of Materials Chemistry A, 2019, 7(22): 13591–13601

    Article  CAS  Google Scholar 

  6. Wu L M, Ni B X, Chen R, Sun P C, Chen T H. A general approach for hierarchically porous metal/N/C nanosphere electrocatalysts: nano-confined pyrolysis of in situ-formed amorphous metal-ligand complexes. Journal of Materials Chemistry A, 2020, 8(40): 21026–21035

    Article  CAS  Google Scholar 

  7. Medard C, Lefevre M, Dodelet J, Jaouen F, Lindbergh G. Oxygen reduction by Fe-based catalysts in PEM fuel cell conditions: activity and selectivity of the catalysts obtained with two Fe precursors and various carbon supports. Electrochimica Acta, 2006, 51(16): 3202–3213

    Article  CAS  Google Scholar 

  8. Wang H G, Weng C C, Yuan Z Y. Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal of Energy Chemistry, 2021, 56: 470–485

    Article  Google Scholar 

  9. Zhao L M, Liu H M, Du Y, Liang X, Wang W J, Zhao H, Li W Z. An ionic liquid as a green solvent for high potency synthesis of 2D covalent organic frameworks. New Journal of Chemistry, 2020, 44 (36): 15410–15414

    Article  CAS  Google Scholar 

  10. Liang X, Liu H M, Du Y, Li W Z, Wang M, Ge B, Zhao L M. Terbium functionalized covalent organic framework for selective and sensitive detection of LVX based on fluorescence enhancement. Colloids and Surfaces A, 2020, 606: 125429

    Article  CAS  Google Scholar 

  11. Sharma R K, Yadav P, Yadav M, Gupta R, Rana P, Srivastava A, Zbořil R, Varma R S, Antonietti M, Gawande M B. Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7(2): 411–454

    Article  CAS  Google Scholar 

  12. Rodríguez-San-Miguel D, Montoro C, Zamora F. Covalent organic framework nanosheets: preparation, properties and applications. Chemical Society Reviews, 2020, 49(8): 2291–2302

    Article  PubMed  Google Scholar 

  13. Li H, Chen F Q, Guan X Y, Li J L, Li C Y, Tang B, Valtchev V, Yan Y S, Qiu S L, Fang Q R. Three-dimensional triptycene-based covalent organic frameworks with ceq or acs topology. Journal of the American Chemical Society, 2021, 143(1): 2654–2659

    Article  CAS  PubMed  Google Scholar 

  14. Cui X, Lei S, Wang A C, Gao L K, Zhang Q, Yang Y K, Lin Z Q. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020, 70: 104525

    Article  CAS  Google Scholar 

  15. Yusran Y, Fang Q R, Valtchev V. Electroactive covalent organic frameworks: design, synthesis, and applications. Advanced Materials, 2020, 32(44): 2002038

    Article  CAS  Google Scholar 

  16. Wang D, Qiu T, Guo W, Liang Z, Tabassum H, Xia D, Zou R. Covalent organic framework-based materials for energy applications. Energy & Environmental Science, 2021, 14(2): 688–728

    Article  CAS  Google Scholar 

  17. Wang J, Wang J R, Qi S Y, Zhao M W. Stable multifunctional single-atom catalysts resulting from the synergistic effect of anchored transition-metal atoms and host covalent-organic frameworks. Journal of Physical Chemistry C, 2020, 124(32): 17675–17683

    Article  CAS  Google Scholar 

  18. Wei S J, Wang Y, Chen W X, Li Z, Cheong W C, Zhang Q H, Gong Y, Gu L, Chen C, Wang D S, et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science (Cambridge), 2020, 11 (3): 786–790

    Article  CAS  Google Scholar 

  19. Roy S, Mari S, Sai M K, Sarma S C, Sarkar S, Peter S C. Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale, 2020, 12(44): 22718–22734

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Y Z, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods, 2019, 3(9): 1800438

    Article  Google Scholar 

  21. Kandambeth S, Mallick A, Lukose B, Mane M V, Heine T, Banerjee R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. Journal of the American Chemical Society, 2012, 134(48): 19524–19527

    Article  CAS  PubMed  Google Scholar 

  22. Zhao H, Hu Z P, Zhu Y P, Ge L, Yuan Z Y. P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. Chinese Journal of Catalysis, 2019, 40(9): 1366–1374

    Article  CAS  Google Scholar 

  23. Zhao H, Weng C C, Ren J T, Ge L, Liu Y P, Yuan Z Y. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts. Chinese Journal of Catalysis, 2020, 41(2): 259–267

    Article  CAS  Google Scholar 

  24. Yang Z, Zhao C, Qu Y, Zhou H, Zhou F, Wang J, Wu Y, Li Y. Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Advanced Materials, 2019, 31(12): 1808043

    Article  Google Scholar 

  25. Lv X W, Liu Y, Wang Y S, Liu X L, Yuan Z Y. Encapsulating vanadium nitride nanodots into N,S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Applied Catalysis B: Environmental, 2021, 280: 119434

    Article  CAS  Google Scholar 

  26. Weng C C, Ren J T, Hu Z P, Yuan Z Y. Nitrogen-doped defect-rich graphitic carbon nanorings with CoOx nanoparticles as highly efficient electrocatalyst for oxygen electrochemistry. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15811–15821

    Article  CAS  Google Scholar 

  27. Ouyang T, Ye Y Q, Wu C Y, Xiao K, Liu Z Q. Heterostructures comprised of Co/β-Mo2C-encapsulated N-doped carbon nanotubes as bifunctional electrodes for water splitting. Angewandte Chemie International Edition, 2019, 58(15): 4923–4928

    Article  CAS  PubMed  Google Scholar 

  28. Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz A J R, Fischer R A, Schuhmann W, Muhler M. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode. Angewandte Chemie International Edition, 2016, 55(12): 4087–4091

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Zhou Z Y, Lai Y J, You Y, Liu J G, Wu X L, Terefe E, Chen C, Song L, Rauf M, et al. Phenylenediaminebased FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. Journal of the American Chemical Society, 2014, 136(31): 10882–10885

    Article  CAS  PubMed  Google Scholar 

  30. Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science, 2009, 324(5923): 71–74

    Article  PubMed  Google Scholar 

  31. Lai L, Potts J R, Zhan D, Wang L, Poh C K, Tang C, Gong H, Shen Z, Lin J, Ruoff R S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 2012, 5(7): 7936–7942

    Article  CAS  Google Scholar 

  32. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 2016, 351(6271): 361–365

    Article  CAS  PubMed  Google Scholar 

  33. Wu G, More K L, Johnston C M, Zelenay P. High performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science, 2011, 332(6028): 443–447

    Article  CAS  PubMed  Google Scholar 

  34. Cheon J Y, Kim J H, Kim J H, Goddeti K C, Park J Y, Joo S H. Intrinsic relationship between enhanced oxygen reduction reaction activity and nanoscale work function of doped carbons. Journal of the American Chemical Society, 2014, 136(25): 8875–8878

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y T, Wang P, Yang J, Lu S S, Li K K, Liu G Y, Duan Y F, Qiu J S. Decorating ZIF-67-derived cobalt-nitrogen doped carbon nanocapsules on 3D carbon frameworks for efficient oxygen reduction and oxygen evolution. Carbon, 2021, 177: 344–356

    Article  CAS  Google Scholar 

  36. Sa Y J, Park S O, Jung G Y, Shin T J, Jeong H Y, Kwak S K, Joo S H. Heterogeneous Co-N/C electrocatalysts with controlled cobalt site densities for the hydrogen evolution reaction: structure-activity correlations and kinetic insights. ACS Catalysis, 2019, 9 (1): 83–97

    Article  CAS  Google Scholar 

  37. Liu Y, Song C Y, Wang Y C, Cao W H, Lei Y P, Feng Q G, Chen Z, Liang S J, Xu L, Jiang L L. Rational designed Co@N-doped carbon catalyst for high-efficient H2S selective oxidation by regulating electronic structures. Chemical Engineering Journal, 2020, 401: 126038

    Article  CAS  Google Scholar 

  38. Tan Y, Xu C, Chen G, Fang X, Zheng N, Xie Q. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Advanced Functional Materials, 2012, 22(21): 4584–4591

    Article  CAS  Google Scholar 

  39. Liu S, Wang Z, Zhou S, Yu F, Yu M, Chiang C Y, Zhou W, Zhao J, Qiu J. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Advanced Materials, 2017, 29(31): 1700874–1700883

    Article  Google Scholar 

  40. Yang H B, Miao J W, Hung S F, Chen J Z, Tao H B, Wang X Z, Zhang L P, Chen R, Gao J J, Chen H M, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2(4): e1501122

    Article  PubMed  PubMed Central  Google Scholar 

  41. Masa J, Xia W, Muhler M, Schuhmann W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angewandte Chemie International Edition, 2015, 54(35): 10102–10120

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2019PB013), the Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. CXCY2021161), the Natural Science Foundation of Tianjin (Grant No. 19JCZDJC37700), and the National Natural Science Foundation of China (Grant No. 21875118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhao or Zhong-Yong Yuan.

Electronic Supplementary Material

11705_2021_2104_MOESM1_ESM.pdf

Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RQ., Ma, A., Liang, X. et al. Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Front. Chem. Sci. Eng. 15, 1550–1560 (2021). https://doi.org/10.1007/s11705-021-2104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2104-4

Keywords

Navigation