Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant and animal small RNA communications between cells and organisms

Subjects

Abstract

Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of mechanisms of small RNA biogenesis and modes of action.
Fig. 2: Endogenous siRNAs in plants and Caenorhabditis elegans.
Fig. 3: Cell-to-cell and long-distance transfer of small RNAs.
Fig. 4: Signal amplification in transgene silencing in plants.
Fig. 5: Pattern formation by the mobile microRNA miR165/6 in leaves and roots involves distinct mechanisms.
Fig. 6: Interspecies small RNAs.

Similar content being viewed by others

References

  1. Fagard, M. & Vaucheret, H. (Trans)Gene silencing in plants: how many mechanisms? Annu Rev. Plant Physiol. Plant Mol. Biol. 51, 167–194 (2000).

    CAS  PubMed  Google Scholar 

  2. Palauqui, J. C., Elmayan, T., Pollien, J. M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Voinnet, O. & Baulcombe, D. C. Systemic signalling in gene silencing. Nature 389, 553 (1997).

    CAS  PubMed  Google Scholar 

  4. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  5. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    CAS  PubMed  Google Scholar 

  6. Baulcombe, D. C. VIGS, HIGS and FIGS: small RNA silencing in the interactions of viruses or filamentous organisms with their plant hosts. Curr. Opin. Plant Biol. 26, 141–146 (2015).

    CAS  PubMed  Google Scholar 

  7. Koch, A. & Kogel, K. H. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol. J. 12, 821–831 (2014).

    CAS  PubMed  Google Scholar 

  8. Petit, J. D., Li, Z. P., Nicolas, W. J., Grison, M. S. & Bayer, E. M. Dare to change, the dynamics behind plasmodesmata-mediated cell-to-cell communication. Curr. Opin. Plant Biol. 53, 80–89 (2020).

    CAS  PubMed  Google Scholar 

  9. Esau, K. & Thorsch, J. Sieve plate pores and plasmodesmata, the communication channels of the symplast: ultrastructural aspects and developmental relations. Am. J. Bot. 72, 1641–1653 (1985).

    Google Scholar 

  10. Ross-Elliott, T. J. et al. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6, e24125 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Chen, W. et al. A genetic network for systemic RNA silencing in plants. Plant Physiol. 176, 2700–2719 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Melnyk, C. W., Molnar, A., Bassett, A. & Baulcombe, D. C. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana. Curr. Biol. 21, 1678–1683 (2011).

    CAS  PubMed  Google Scholar 

  13. Molnar, A. et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328, 872–875 (2010).

    CAS  PubMed  Google Scholar 

  14. Taochy, C. et al. A genetic screen for impaired systemic RNAi highlights the crucial role of DICER-LIKE 2. Plant Physiol. 175, 1424–1437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brosnan, C. A. et al. Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 14741–14746 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. & Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat. Genet. 39, 848–856 (2007).

    CAS  PubMed  Google Scholar 

  17. Schwach, F., Vaistij, F. E., Jones, L. & Baulcombe, D. C. An RNA-dependent RNA polymerase prevents meristem invasion by potato virus X and is required for the activity but not the production of a systemic silencing signal. Plant Physiol. 138, 1842–1852 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith, L. M. et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell 19, 1507–1521 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, H. M. et al. 22-nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl Acad. Sci. USA 107, 15269–15274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuperus, J. T. et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat. Struct. Mol. Biol. 17, 997–1003 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mlotshwa, S. et al. DICER-LIKE2 plays a primary role in transitive silencing of transgenes in Arabidopsis. PLoS ONE 3, e1755 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Parent, J. S., Bouteiller, N., Elmayan, T. & Vaucheret, H. Respective contributions of Arabidopsis DCL2 and DCL4 to RNA silencing. Plant J. 81, 223–232 (2015).

    CAS  PubMed  Google Scholar 

  23. Borges, F. & Martienssen, R. A. The expanding world of small RNAs in plants. Nat. Rev. Mol. Cell Biol. 16, 727–741 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez, G. et al. Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat. Genet. 50, 193–198 (2018).

    CAS  PubMed  Google Scholar 

  25. Panda, K., McCue, A. D. & Slotkin, R. K. Arabidopsis RNA polymerase IV generates 21-22 nucleotide small RNAs that can participate in RNA-directed DNA methylation and may regulate genes. Phil. Trans. R. Soc. B 375, 20190417 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    CAS  PubMed  Google Scholar 

  27. Devers, E. A. et al. Movement and differential consumption of short interfering RNA duplexes underlie mobile RNA interference. Nat. Plants 6, 789–799 (2020).

    CAS  PubMed  Google Scholar 

  28. Brosnan, C. A. et al. Genome-scale, single-cell-type resolution of microRNA activities within a whole plant organ. EMBO J. 38, e100754 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Su, Z. et al. Regulation of female germline specification via small RNA mobility in Arabidopsis. Plant Cell 32, 2842–2854 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosas-Diaz, T. et al. A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc. Natl Acad. Sci. USA 115, 1388–1393 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tijsterman, M., May, R. C., Simmer, F., Okihara, K. L. & Plasterk, R. H. Genes required for systemic RNA interference in Caenorhabditis elegans. Curr. Biol. 14, 111–116 (2004).

    CAS  PubMed  Google Scholar 

  32. Timmons, L., Tabara, H., Mello, C. C. & Fire, A. Z. Inducible systemic RNA silencing in Caenorhabditis elegans. Mol. Biol. Cell 14, 2972–2983 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Winston, W. M., Sutherlin, M., Wright, A. J., Feinberg, E. H. & Hunter, C. P. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl Acad. Sci. USA 104, 10565–10570 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Winston, W. M., Molodowitch, C. & Hunter, C. P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    CAS  PubMed  Google Scholar 

  35. Jose, A. M., Smith, J. J. & Hunter, C. P. Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc. Natl Acad. Sci. USA 106, 2283–2288 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shih, J. D. & Hunter, C. P. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 10, 1165-57 (2011).

    Google Scholar 

  37. Marré, J., Traver, E. C. & Jose, A. M. Extracellular RNA is transported from one generation to the next in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 113, 12496–12501 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Whangbo, J. S., Weisman, A. S., Chae, J. & Hunter, C. P. SID-1 domains Important for dsRNA import in Caenorhabditis elegans. G3 7, 3887–3899 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Felix, M. A. et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gammon, D. B. et al. The antiviral RNA interference response provides resistance to lethal Arbovirus infection and vertical transmission in Caenorhabditis elegans. Curr. Biol. 27, 795–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rechavi, O., Minevich, G. & Hobert, O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 147, 1248–1256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhuang, J. J. & Hunter, C. P. Tissue specificity of Caenorhabditis elegans enhanced RNA interference mutants. Genetics 188, 235–237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McEwan, D. L., Weisman, A. S. & Hunter, C. P. Uptake of extracellular double-stranded RNA by SID-2. Mol. Cell 47, 746–754 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Braukmann, F., Jordan, D., Jenkins, B., Koulman, A. & Miska, E. A. SID-2 negatively regulates development likely independent of nutritional dsRNA uptake. RNA Biol. 18, 888–899 (2021).

    CAS  PubMed  Google Scholar 

  45. Nuez, I. & Felix, M. A. Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes. PLoS ONE 7, e29811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaletsky, R. et al. C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586, 445–451 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rechavi, O. Transgenerational inheritance: that pathogen gut feeling. Curr. Biol. 30, R1486–R1488 (2020).

    CAS  PubMed  Google Scholar 

  48. Jose, A. M., Kim, Y. A., Leal-Ekman, S. & Hunter, C. P. Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc. Natl Acad. Sci. USA 109, 14520–14525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhatia, S. & Hunter, C. P. SID-4/NCK-1 is important for dsRNA import in Caenorhabditis elegans. Preprint at bioRxiv https://doi.org/10.1101/702019 (2019).

    Article  Google Scholar 

  50. Hinas, A., Wright, A. J. & Hunter, C. P. SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans. Curr. Biol. 22, 1938–1943 (2012).

    CAS  PubMed  Google Scholar 

  51. Jose, A. M. Movement of regulatory RNA between animal cells. Genesis 53, 395–416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Imae, R., Dejima, K., Kage-Nakadai, E., Arai, H. & Mitani, S. Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans. Sci. Rep. 6, 28198 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, E. & Hunter, C. P. SID-1 functions in multiple roles to support parental RNAi in Caenorhabditis elegans. Genetics 207, 547–557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Preston, M. A. et al. Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nat. Methods 16, 437–445 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shukla, A. et al. Poly(UG)-tailed RNAs in genome protection and epigenetic inheritance. Nature 582, 283–288 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dzitoyeva, S., Dimitrijevic, N. & Manev, H. Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol. Psychiatry 6, 665–670 (2001).

    CAS  PubMed  Google Scholar 

  57. Goto, A., Blandin, S., Royet, J., Reichhart, J. M. & Levashina, E. A. Silencing of Toll pathway components by direct injection of double-stranded RNA into Drosophila adult flies. Nucleic Acids Res. 31, 6619–6623 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller, S. C., Brown, S. J. & Tomoyasu, Y. Larval RNAi in Drosophila? Dev. Genes Evol. 218, 505–510 (2008).

    CAS  PubMed  Google Scholar 

  60. Tomoyasu, Y. et al. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol. 9, R10 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Saleh, M.-C. et al. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 8, 793–802 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ulvila, J. et al. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 281, 14370–14375 (2006).

    CAS  PubMed  Google Scholar 

  63. Xiao, D. et al. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochem. Mol. Biol. 60, 68–77 (2015).

    CAS  PubMed  Google Scholar 

  64. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Karlikow, M. et al. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci. Rep. 6, 27085 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vance, V. & Vaucheret, H. RNA silencing in plants–defense and counterdefense. Science 292, 2277–2280 (2001).

    CAS  PubMed  Google Scholar 

  67. Gammon, D. B. Caenorhabditis elegans as an emerging model for virus-host interactions. J Virol. 91, e00509-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Garcia-Ruiz, H. et al. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22, 481–496 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, X. B. et al. RNAi-mediated viral immunity requires amplification of virus-derived siRNAs in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 484–489 (2010).

    CAS  PubMed  Google Scholar 

  70. Saleh, M.-C. et al. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458, 346–350 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tassetto, M., Kunitomi, M. & Andino, R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169, 314–325.e13 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Goic, B. et al. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila. Nat. Immunol. 14, 396–403 (2013).

    CAS  PubMed  Google Scholar 

  73. Goic, B. et al. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 7, 12410 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Poirier, E. Z. et al. Dicer-2-dependent generation of viral DNA from defective genomes of RNA viruses modulates antiviral immunity in insects. Cell Host Microbe 23, 353–365.e8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Suzuki, Y. et al. Non-retroviral endogenous viral element limits cognate virus replication in Aedes aegypti ovaries. Curr. Biol. 30, 3495–3506.e6 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Maori, E. et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. 18, 55–60 (2009).

    CAS  PubMed  Google Scholar 

  77. Maori, E. et al. A secreted RNA binding protein forms RNA-stabilizing granules in the honeybee royal jelly. Mol. Cell 74, 598–608.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Maori, E. et al. A transmissible RNA pathway in honey bees. Cell Rep. 27, 1949–1959.e6 (2019).

    CAS  PubMed  Google Scholar 

  79. Houri-Zeevi, L. & Rechavi, O. A matter of time: small RNAs regulate the duration of epigenetic inheritance. Trends Genet. 33, 46–57 (2017).

    CAS  PubMed  Google Scholar 

  80. Zhuang, J. J. & Hunter, C. P. The influence of competition among C. elegans small RNA pathways on development. Genes 3, 671–685 (2012).

    PubMed  PubMed Central  Google Scholar 

  81. Sarkies, P., Ashe, A., Le Pen, J., McKie, M. A. & Miska, E. A. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans. Genome Res. 23, 1258–1270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. You, C. et al. FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nat. Commun. 10, 4424 (2019).

    PubMed  PubMed Central  Google Scholar 

  83. Wahba, L., Hansen, L. & Fire, A. Z. An essential role for the piRNA pathway in regulating the ribosomal RNA pool in C. elegans. Dev. Cell 56, 2295–2312.e6 (2021).

    CAS  PubMed  Google Scholar 

  84. Li, S. et al. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nat. Plants 7, 50–59 (2021).

    CAS  PubMed  Google Scholar 

  85. Leslie, M. NIH effort gambles on mysterious extracellular RNAs. Science 341, 947 (2013).

    CAS  PubMed  Google Scholar 

  86. Posner, R. et al. Neuronal small RNAs control behavior transgenerationally. Cell 177, 1814–1826.e15 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, Y., Teng, C., Xia, R. & Meyers, B. C. PhasiRNAs in plants: their biogenesis, genic sources, and roles in stress responses, development, and reproduction. Plant Cell 32, 3059–3080 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Garcia, D., Collier, S. A., Byrne, M. E. & Martienssen, R. A. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr. Biol. 16, 933–938 (2006).

    CAS  PubMed  Google Scholar 

  89. Nogueira, F. T., Madi, S., Chitwood, D. H., Juarez, M. T. & Timmermans, M. C. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev. 21, 750–755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu, L. et al. Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis. Plant Cell Physiol. 47, 853–863 (2006).

    CAS  PubMed  Google Scholar 

  91. Adenot, X. et al. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 16, 927–932 (2006).

    CAS  PubMed  Google Scholar 

  92. Fahlgren, N. et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16, 939–944 (2006).

    CAS  PubMed  Google Scholar 

  93. Hunter, C. et al. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133, 2973–2981 (2006).

    CAS  PubMed  Google Scholar 

  94. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. & Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes. Dev. 18, 2368–2379 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoshikawa, M., Peragine, A., Park, M. Y. & Poethig, R. S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes. Dev. 19, 2164–2175 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hobecker, K. V. et al. The microRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol. 174, 2469–2486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Marin, E. et al. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22, 1104–1117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yoon, E. K. et al. Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res. 38, 1382–1391 (2010).

    CAS  PubMed  Google Scholar 

  99. Li, X. et al. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. N. Phytol. 201, 531–544 (2014).

    CAS  Google Scholar 

  100. Nagasaki, H. et al. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc. Natl Acad. Sci. USA 104, 14867–14871 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Su, Z. et al. The THO complex non-cell-autonomously represses female germline specification through the TAS3-ARF3 module. Curr. Biol. 27, 1597–1609.e2 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ding, B. et al. Developmental genetics of corolla tube formation: role of the tasiRNA-ARF pathway and a conceptual model. Plant Cell 32, 3452–3468 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Chitwood, D. H. et al. Pattern formation via small RNA mobility. Genes Dev. 23, 549–554 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Johnson, C. et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 19, 1429–1440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang, X. et al. Widespread occurrence of microRNA-mediated target cleavage on membrane-bound polysomes. Genome Biol. 22, 15 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhai, J. et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc. Natl Acad. Sci. USA 112, 3146–3151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Araki, S. et al. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat. Commun. 11, 3115 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Fan, Y. et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl Acad. Sci. USA 113, 15144–15149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tamim, S. et al. Cis-directed cleavage and nonstoichiometric abundances of 21-nucleotide reproductive phased small interfering RNAs in grasses. N. Phytol. 220, 865–877 (2018).

    CAS  Google Scholar 

  110. Zhou, H. et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649–660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Komiya, R. et al. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J. 78, 385–397 (2014).

    CAS  PubMed  Google Scholar 

  112. Teng, C. et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11, 2912 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Jiang, P. et al. 21-nt phasiRNAs direct target mRNA cleavage in rice male germ cells. Nat. Commun. 11, 5191 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tian, P. et al. Evolution and diversification of reproductive phased small interfering RNAs in Oryza species. N. Phytol. 229, 2970–2983 (2021).

    CAS  Google Scholar 

  115. Zhang, Y. C. et al. Reproductive phasiRNAs regulate reprogramming of gene expression and meiotic progression in rice. Nat. Commun. 11, 6031 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kasschau, K. D. et al. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 5, e57 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Long, J. et al. Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis. Science 373, eabh0556 (2021).

    CAS  PubMed  Google Scholar 

  118. Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Martinez, G., Panda, K., Kohler, C. & Slotkin, R. K. Silencing in sperm cells is directed by RNA movement from the surrounding nurse cell. Nat. Plants 2, 16030 (2016).

    CAS  PubMed  Google Scholar 

  120. Klesen, S., Hill, K. & Timmermans, M. C. P. Small RNAs as plant morphogens. Curr. Top. Dev. Biol. 137, 455–480 (2020).

    CAS  PubMed  Google Scholar 

  121. Yao, X. et al. Two types of cis-acting elements control the abaxial epidermis-specific transcription of the MIR165a and MIR166a genes. FEBS Lett. 583, 3711–3717 (2009).

    CAS  PubMed  Google Scholar 

  122. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    CAS  PubMed  Google Scholar 

  123. Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. & Timmermans, M. C. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88 (2004).

    CAS  PubMed  Google Scholar 

  124. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    CAS  PubMed  Google Scholar 

  125. Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Miyashima, S., Koi, S., Hashimoto, T. & Nakajima, K. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138, 2303–2313 (2011).

    CAS  PubMed  Google Scholar 

  127. Knauer, S. et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev. Cell 24, 125–132 (2013).

    CAS  PubMed  Google Scholar 

  128. Buhtz, A., Springer, F., Chappell, L., Baulcombe, D. C. & Kehr, J. Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J. 53, 739–749 (2008).

    CAS  PubMed  Google Scholar 

  129. Yoo, B. C. et al. A systemic small RNA signaling system in plants. Plant Cell 16, 1979–2000 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lin, S. I. et al. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiol. 147, 732–746 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Buhtz, A., Pieritz, J., Springer, F. & Kehr, J. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol. 10, 64 (2010).

    PubMed  PubMed Central  Google Scholar 

  132. Okuma, N., Soyano, T., Suzaki, T. & Kawaguchi, M. MIR2111-5 locus and shoot-accumulated mature miR2111 systemically enhance nodulation depending on HAR1 in Lotus japonicus. Nat. Commun. 11, 5192 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Tsikou, D. et al. Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362, 233–236 (2018).

    CAS  PubMed  Google Scholar 

  134. Skopelitis, D. S., Benkovics, A. H., Husbands, A. Y. & Timmermans, M. C. P. Boundary formation through a direct threshold-based readout of mobile small RNA gradients. Dev. Cell 43, 265–273.e6 (2017).

    CAS  PubMed  Google Scholar 

  135. Vaten, A. et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21, 1144–1155 (2011).

    CAS  PubMed  Google Scholar 

  136. Skopelitis, D. S. et al. Gating of miRNA movement at defined cell-cell interfaces governs their impact as positional signals. Nat. Commun. 9, 3107 (2018).

    PubMed  PubMed Central  Google Scholar 

  137. Liu, Q. et al. The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J. 58, 27–40 (2009).

    CAS  PubMed  Google Scholar 

  138. Zhu, H. et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145, 242–256 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cai, H. et al. Spatiotemporal control of miR398 biogenesis via chromatin remodeling and kinase signaling ensures proper ovule development. Plant Cell 33, 1530–1553 (2021).

    PubMed  PubMed Central  Google Scholar 

  140. de Felippes, F. F., Ott, F. & Weigel, D. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res. 39, 2880–2889 (2011).

    PubMed  Google Scholar 

  141. Bologna, N. G. et al. Nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway. Mol. Cell 69, 709–719.e5 (2018).

    CAS  PubMed  Google Scholar 

  142. Li, S. et al. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis. eLife 5, e22750 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Jouannet, V. et al. Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J. 31, 1704–1713 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Dalmadi, A., Gyula, P., Balint, J., Szittya, G. & Havelda, Z. AGO-unbound cytosolic pool of mature miRNAs in plant cells reveals a novel regulatory step at AGO1 loading. Nucleic Acids Res. 47, 9803–9817 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ow, M. C., Borziak, K., Nichitean, A. M., Dorus, S. & Hall, S. E. Early experiences mediate distinct adult gene expression and reproductive programs in Caenorhabditis elegans. PLOS Genet. 14, e1007219 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Ohno, H. & Bao, Z. Small RNAs couple embryonic developmental programs to gut microbes. Preprint at bioRxiv https://doi.org/10.1101/2020.11.13.381830 (2020).

    Article  Google Scholar 

  147. Long, O. S. et al. A C. elegans model of human α1-antitrypsin deficiency links components of the RNAi pathway to misfolded protein turnover. Hum. Mol. Genet. 23, 5109–5122 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Setten, R. L., Rossi, J. J. & Han, S.-P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 18, 421–446 (2019).

    CAS  PubMed  Google Scholar 

  149. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    CAS  PubMed  Google Scholar 

  150. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5, e19276 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21, 585–606 (2020).

    PubMed  PubMed Central  Google Scholar 

  152. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2, 20360 (2013).

    Google Scholar 

  154. Kim, Y.-K., Yeo, J., Kim, B., Ha, M. & Kim, V. N. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol. Cell 46, 893–895 (2012).

    CAS  PubMed  Google Scholar 

  155. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010).

    CAS  PubMed  Google Scholar 

  156. Chevillet, J. R. et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc. Natl Acad. Sci. USA 111, 14888–14893 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Das, S. et al. The Extracellular RNA Communication Consortium: establishing foundational knowledge and technologies for extracellular RNA research. Cell 177, 231–242 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Srinivasan, S. et al. Small RNA sequencing across diverse biofluids identifies optimal methods for exRNA isolation. Cell 177, 446–462.e16 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Shurtleff, M. J. et al. Broad role for YBX1 in defining the small noncoding RNA composition of exosomes. Proc. Natl Acad. Sci. USA 114, E8987–E8995 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    PubMed  Google Scholar 

  162. Bolukbasi, M. F. et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids 1, e10 (2012).

    PubMed  PubMed Central  Google Scholar 

  163. Koppers-Lalic, D. et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep. 8, 1649–1658 (2014).

    CAS  PubMed  Google Scholar 

  164. Clancy, J. W., Zhang, Y., Sheehan, C. & D’Souza-Schorey, C. An ARF6–exportin-5 axis delivers pre-miRNA cargo to tumour microvesicles. Nat. Cell Biol. 21, 856–866 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Leidal, A. M. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat. Cell Biol. 22, 187–199 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. McKenzie, A. J. et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Matsuzaki, J. & Ochiya, T. Extracellular microRNAs and oxidative stress in liver injury: a systematic mini review. J. Clin. Biochem. Nutr. 63, 6–11 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Beninson, L. A. et al. Acute stressor exposure modifies plasma exosome-associated heat shock protein 72 (Hsp72) and microRNA (miR-142-5p and miR-203). PLoS ONE 9, e108748 (2014).

    PubMed  PubMed Central  Google Scholar 

  169. Ma, C. et al. Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med. Sci. Sports Exerc. 50, 2024–2032 (2018).

    PubMed  Google Scholar 

  170. Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA 108, 5003–5008 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, K., Zhang, S., Weber, J., Baxter, D. & Galas, D. J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38, 7248–7259 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Rechavi, O. et al. Trans-SILAC: sorting out the non-cell-autonomous proteome. Nat. Methods 7, 923–927 (2010).

    CAS  PubMed  Google Scholar 

  174. Rechavi, O. et al. Cell contact-dependent acquisition of cellular and viral nonautonomously encoded small RNAs. Genes Dev. 23, 1971–1979 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Valiunas, V. et al. Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions: oligonucleotide and siRNA transfer through gap junctions. J. Physiol. 568, 459–468 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kizana, E., Cingolani, E. & Marbán, E. Non-cell-autonomous effects of vector-expressed regulatory RNAs in mammalian heart cells. Gene Ther. 16, 1163–1168 (2009).

    CAS  PubMed  Google Scholar 

  177. Katakowski, M., Buller, B., Wang, X., Rogers, T. & Chopp, M. Functional microRNA is transferred between glioma cells. Cancer Res. 70, 8259–8263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Lim, P. K. et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 71, 1550–1560 (2011).

    CAS  PubMed  Google Scholar 

  179. Lu, J. J., Yang, W. M., Li, F., Zhu, W. & Chen, Z. Tunneling nanotubes mediated microRNA-155 intercellular transportation promotes bladder cancer cells’ invasive and proliferative capacity. Int. J. Nanomed. 14, 9731–9743 (2019).

    CAS  Google Scholar 

  180. Morales, C. R. et al. A TB-RBP and Ter ATPase complex accompanies specific mRNAs from nuclei through the nuclear pores and into intercellular bridges in mouse male germ cells. Dev. Biol. 246, 480–494 (2002).

    CAS  PubMed  Google Scholar 

  181. Bermúdez-Barrientos, J. R., Ramírez-Sánchez, O., Chow, F. W.-N., Buck, A. H. & Abreu-Goodger, C. Disentangling sRNA-Seq data to study RNA communication between species. Nucleic Acids Res. 48, e21 (2020).

    PubMed  Google Scholar 

  182. Shahid, S. et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553, 82–85 (2018).

    CAS  PubMed  Google Scholar 

  183. Zhang, T. et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants 2, 16153 (2016).

    CAS  PubMed  Google Scholar 

  184. Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Dunker, F. et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 9, e56096 (2020).

    PubMed  PubMed Central  Google Scholar 

  186. Hou, Y. et al. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25, 153–165.e5 (2019).

    CAS  PubMed  Google Scholar 

  187. Ren, B., Wang, X., Duan, J. & Ma, J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919–922 (2019).

    CAS  PubMed  Google Scholar 

  188. Wang, B. et al. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. N. Phytol. 215, 338–350 (2017).

    CAS  Google Scholar 

  189. Weiberg, A. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342, 118–123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Qiao, Y. et al. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45, 330–333 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Rutter, B. D. & Innes, R. W. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol. 173, 728–741 (2017).

    CAS  PubMed  Google Scholar 

  192. Baldrich, P. et al. Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. Plant Cell 31, 315–324 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. He, B. et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat. Plants 7, 342–352 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Rutter, B. D. & Innes, R. W. Growing pains: addressing the pitfalls of plant extracellular vesicle research. N. Phytol. 228, 1505–1510 (2020).

    Google Scholar 

  195. Park, M. S., Sim, G., Kehling, A. C. & Nakanishi, K. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc. Natl Acad. Sci. USA 117, 28576–28578 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Maule, A. G. et al. An eye on RNAi in nematode parasites. Trends Parasitol. 27, 505–513 (2011).

    CAS  PubMed  Google Scholar 

  197. Liu, H. et al. Escherichia coli noncoding RNAs can affect gene expression and physiology of Caenorhabditis elegans. Nat. Commun. 3, 1073 (2012).

    PubMed  Google Scholar 

  198. Akay, A., Sarkies, P. & Miska, E. A. E. coli OxyS non-coding RNA does not trigger RNAi in C. elegans. Sci. Rep. 5, 9597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Buck, A. H. et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat. Commun. 5, 5488 (2014).

    CAS  PubMed  Google Scholar 

  200. Quintana, J. F. et al. Comparative analysis of small RNAs released by the filarial nematode Litomosoides sigmodontis in vitro and in vivo. PLoS Neg. Trop. Dis. 13, e0007811 (2019).

    Google Scholar 

  201. Quintana, J. F. et al. Extracellular Onchocerca-derived small RNAs in host nodules and blood. Parasites Vectors 8, 58 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Nowacki, F. C. et al. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni. J. Extracell. Vesicles 4, 28665 (2015).

    PubMed  Google Scholar 

  203. Chow, F. W.-N. et al. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Res. 47, 3594–3606 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Sarkies, P. & Miska, E. A. Molecular biology. Is there social RNA? Science 341, 467–468 (2013).

    CAS  PubMed  Google Scholar 

  205. Mayoral, J. G. et al. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc. Natl Acad. Sci. USA 111, 18721–18726 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Cui, C. et al. A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection. Nat. Commun. 10, 4298 (2019).

    PubMed  PubMed Central  Google Scholar 

  207. Baum, J. A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).

    CAS  PubMed  Google Scholar 

  208. Bolognesi, R. et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 7, e47534 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Miyata, K. et al. Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm. PLoS ONE 9, e101661 (2014).

    PubMed  PubMed Central  Google Scholar 

  210. Chow, Y. S. et al. in Encyclopedia of Entomology (ed. Capinera, J. L.) 4205–4207 (Springer, 2008).

  211. Zhu, K. et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 13, e1006946 (2017).

    PubMed  PubMed Central  Google Scholar 

  212. Garbian, Y., Maori, E., Kalev, H., Shafir, S. & Sela, I. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population. PLoS Pathog. 8, e1003035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. LaMonte, G. et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe 12, 187–199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, Z. et al. Red blood cells release microparticles containing human argonaute 2 and miRNAs to target genes of Plasmodium falciparum: MPs and hAgo2-miRNAs targeting P. falciparum. Emerg. Microbes Infect. 6, 1–11 (2017).

    Google Scholar 

  215. Liu, S. et al. The host shapes the gut microbiota via fecal microRNA. Cell Host Microbe 19, 32–43 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Zhang, L. et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 22, 107–126 (2012).

    CAS  PubMed  Google Scholar 

  217. Chen, Q. et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 31, 247–258 (2021).

    PubMed  Google Scholar 

  218. Tian, Y., Simanshu, D. K., Ma, J.-B. & Patel, D. J. Structural basis for piRNA 2’-O-methylated 3’-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc. Natl Acad. Sci. USA 108, 903–910 (2011).

    CAS  PubMed  Google Scholar 

  219. Svoboda, P. in Introduction to RNAi and miRNA pathways 1st edn 313–328 (Karolinum, 2020).

  220. Dickinson, B. et al. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat. Biotechnol. 31, 965–967 (2013).

    CAS  PubMed  Google Scholar 

  221. Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Tavora, B. et al. Tumoural activation of TLR3–SLIT2 axis in endothelium drives metastasis. Nature 586, 299–304 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193–1207 (2006).

    CAS  PubMed  Google Scholar 

  224. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Kobayashi, H. & Tomari, Y. RISC assembly: coordination between small RNAs and Argonaute proteins. Biochim. Biophys. Acta 1859, 71–81 (2016).

    CAS  PubMed  Google Scholar 

  226. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Fang, X. & Qi, Y. RNAi in plants: an Argonaute-centered view. Plant Cell 28, 272–285 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Czech, B. et al. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 52, 131–157 (2018).

    CAS  PubMed  Google Scholar 

  229. Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Axtell, M. J. & Meyers, B. C. Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30, 272–284 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6, 376–385 (2005).

    CAS  PubMed  Google Scholar 

  232. Meyers, B. C. et al. Criteria for annotation of plant microRNAs. Plant Cell 20, 3186–3190 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Chapman, E. J. & Carrington, J. C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896 (2007).

    CAS  PubMed  Google Scholar 

  234. Fukudome, A. & Fukuhara, T. Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J. Plant Res. 130, 33–44 (2017).

    CAS  PubMed  Google Scholar 

  235. Castel, S. E. & Martienssen, R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Gu, S. G. et al. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat. Genet. 44, 157–164 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Mao, H. et al. The Nrde pathway mediates small-RNA-directed histone H3 lysine 27 trimethylation in Caenorhabditis elegans. Curr. Biol. 25, 2398–2403 (2015).

    CAS  PubMed  Google Scholar 

  239. Schwartz-Orbach, L. et al. Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. eLife 9, e54309 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Liu, C. et al. Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses. Dev. Cell 44, 348–361.e7 (2018).

    PubMed  Google Scholar 

  241. Correa, R. L., Steiner, F. A., Berezikov, E. & Ketting, R. F. MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans. PLoS Genet. 6, e1000903 (2010).

    PubMed  PubMed Central  Google Scholar 

  242. Tang, W. et al. A sex chromosome piRNA promotes robust dosage compensation and sex determination in C. elegans. Dev. Cell 44, 762–770.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394–408 (2014).

    CAS  PubMed  Google Scholar 

  244. Cao, M. et al. Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 14613–14618 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Liu, L. & Chen, X. RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol. Plant. 9, 826–836 (2016).

    CAS  PubMed  Google Scholar 

  246. Almeida, M. V., Andrade-Navarro, M. A. & Ketting, R. F. Function and evolution of nematode RNAi pathways. Noncoding RNA 5, 8 (2019).

    CAS  PubMed Central  Google Scholar 

  247. Zhou, X. et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat. Struct. Mol. Biol. 24, 258–269 (2017).

    CAS  PubMed  Google Scholar 

  248. Ketting, R. F. & Cochella, L. Concepts and functions of small RNA pathways in C. elegans. Curr. Top. Dev. Biol. 144, 45–89 (2021).

    PubMed  Google Scholar 

  249. Lev, I. et al. Germ granules govern small RNA inheritance. Curr. Biol. 29, 2880–2891.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Rechavi, O. & Lev, I. Principles of transgenerational small RNA inheritance in Caenorhabditis elegans. Curr. Biol. 27, R720–R730 (2017).

    CAS  PubMed  Google Scholar 

  251. Sapetschnig, A., Sarkies, P., Lehrbach, N. J. & Miska, E. A. Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet. 11, e1005078 (2015).

    PubMed  PubMed Central  Google Scholar 

  252. Ashe, A. et al. PiRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell 150, 88–99 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Buckley, B. A. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489, 447–451 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Luteijn, M. J. et al. Extremely stable Piwi-induced gene silencing in Caenorhabditis elegans: extremely stable Piwi-induced gene silencing. EMBO J. 31, 3422–3430 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Shirayama, M. et al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150, 65–77 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Wan, G. et al. Spatiotemporal regulation of liquid-like condensates in epigenetic inheritance. Nature 557, 679–683 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Xu, F. et al. A cytoplasmic argonaute protein promotes the inheritance of RNAi. Cell Rep. 23, 2482–2494 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to N. Alon for help with the illustrations. Research on small RNAs in the Chen laboratory is funded by the US National Institutes of Health (GM129373). The Rechavi laboratory is funded by ERC grant no. 819151.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Xuemei Chen or Oded Rechavi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Molecular Cell Biology thanks Shouhong Guang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Post-transcriptional gene silencing

Silencing of genetic elements usually through RNA degradation or the inhibition of their translation.

Non-cell-autonomous RNA-mediated gene silencing

RNA-mediated gene silencing in which the trigger for silencing is delivered to, or originates from, cells that are different from those that undergo gene silencing.

Symplasm

The ‘shared’ cytoplasm of nearly all plant cells due to the presence of the plasmodesmata connecting adjacent plant cells.

Apoplasm

The extracellular (outside the plasma membrane) environment consisting of the cell wall and other molecules therein.

Phloem

A tissue in the plant vasculature that transmits nutrients and other molecules to distant plant parts.

siRNA–siRNA* duplexes

Also miRNA–miRNA* duplexes, products of RNA processing by Dicer, consisting of a duplex of small RNAs with an overhang on each strand. The strand that is not loaded into an Argonaute protein is marked with an asterisk.

siRNA bodies

In Arabidopsis thaliana, cytoplasmic foci containing factors involved in the production of endogenous siRNAs, such as ARGONAUTE 7 (AGO7), SUPPRESSOR OF GENE SILENCING 3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE 6 (RDR6).

Apoplastic fluid

The fluid in the plant apoplasm that can be collected through centrifugation.

Transcriptional gene silencing

Silencing of genetic elements at the transcriptional level, usually through the deposition of repressive histone modifications or DNA methylation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Rechavi, O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 23, 185–203 (2022). https://doi.org/10.1038/s41580-021-00425-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-021-00425-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing