Skip to main content
Log in

Gaining acuity on crystal terminology in volcanic rocks

  • Perspectives
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Given the prolific work on the petrography and mineral chemistry of volcanic rocks to understand magmatic processes for well over a century, it is surprising that there are no quantitatively rigorous size classifications or commonly accepted terminologies regarding the origin of such crystals. This causes some confusion when attempting to make meaningful statements about the origin of crystals in porphyritic volcanic rocks. Here, more rigorous size and genetic terminologies for the crystals in volcanic rocks are proposed (size, cf. Table 1: ultrananolite, nanolite, microlite, microcryst, mesocryst, macrocryst, megacryst; genesis, cf. Table 2: autocryst, antecryst, xenocryst). And some caveats are discussed. The genetic terminology may also be employed when interpreting crystal zoning patterns and can be applied to crystal fragments. Adoption of the proposed size classification scheme is expected to lead to quantitatively more precise descriptions of the dimensions of the crystal cargo in volcanic rocks in the literature. Adoption of the proposed genetic terminology is expected to lead to less ambiguous discussions of the genetic processes that operate in magmatic systems in the lead-up to volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armienti P, Barberi F, Innocenti F, Pompilio M, Romano R, Villari L (1984) Compositional variation in the 1983 and other recent Etnean lavas: Insights on the shallow feeding system. Bull Volcanol 47(4):995–1007. https://doi.org/10.1007/BF01952357

    Article  Google Scholar 

  • Bennett EN, Lissenberg CJ, Cashman KV (2019) The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contrib Miner Petrol 174(6):49

    Article  Google Scholar 

  • Bindeman IN (2005) Fragmentation phenomena in populations of magmatic crystals. Am Miner 90:1801–1815

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:eaag3055

    Article  Google Scholar 

  • Castro JM, Mercer C (2004) Microlite textures and volatile contents of obsidian from the Inyo volcanic chain. California Geo Res Lett 31:L18605

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U-Th and U-Pb systematics in zircons. J Petrol 46:3–32

    Article  Google Scholar 

  • Clement CR, Skinner EMW (1985) A textural-genetic classification of kimberlites. S Afr J Geol 88(2):403–409

    Google Scholar 

  • Cooper KM, Reid MR (2008) Uranium-series crystal ages. Rev Mineral Geochem 69:479–544

    Article  Google Scholar 

  • Field L, Barnie T, Blundy J, Brooker RA, Keir D, Lewi E, Saunders K (2012a) Integrated field, satellite and petrological observations of the November 2010 eruption of Erta Ale. Bull Volcanol 74(10):2251–2271

    Article  Google Scholar 

  • Field L, Blundy J, Brooker RA, Wright T, Yirgu G (2012b) Magma storage conditions beneath Dabbahu Volcano (Ethiopia) constrained by petrology, seismicity and satellite geodesy. Bull Volcanol 74:981–1004

    Article  Google Scholar 

  • Field L, Blundy J, Calvert A, Yirgu G (2013) Magmatic history of Dabbahu, a composite volcano in the Afar Rift, Ethiopia. GSA Bull 125:128–147

    Article  Google Scholar 

  • Higgins (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Higgins MD (1994) Determination of crystal morphology and size from bulk measurements on thin SS: numerical modelling. Am Miner 79:113–119

    Google Scholar 

  • Higgins O, Sheldrake T, Caricchi L (2021) Quantitative chemical mapping of plagioclase as a tool for the interpretation of volcanic stratigraphy: an example from Saint Kitts, Lesser Antilles. Bull Volcanol 83:1–15

    Article  Google Scholar 

  • Humler E, Whitechurch H (1988) Petrology of basalts from the Central Indian Ridge (lat. 25°23’S, long. 70°04’E): estimates of frequencies and fractional volumes of magma injections in a two-layered reservoir. Earth Planet Sci Lett 88:169–181

    Article  Google Scholar 

  • Humphreys MCS, Christopher T, Hards V (2009) Microlite transfer by disaggregation of mafic inclusions following magma mixing at Soufrière Hills volcano, Montserrat. Contrib Miner Petrol 157:609–624

    Article  Google Scholar 

  • Iddings (1892) On the crystallization of igneous rocks. Bull Philos Soc Wash 11:71-112

  • Jerram DA, Martin VM (2008) Understanding crystal populations and their significance through the magma plumbing system. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation, vol 304. Geological Society, London, pp 133–148

    Google Scholar 

  • Kearey P (2009) The encyclopedia of the solid earth sciences. Wiley, p 736

  • Knafelc J, Bryan SE, Gust D, Cathey HE (2020) Defining pre-eruptive conditions of the havre 2012 submarine rhyolite eruption using crystal archives. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.00310

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Lormand C, Zellmer GF, Kilgour GN, Németh K, Palmer AS, Sakamoto N, Yurimoto H, Kuritani T, Iizuka Y, Moebis A (2020) Slow ascent of unusually hot intermediate magmas triggering Strombolian to sub-Plinian eruptions. J Petrol 61:egaa077

    Article  Google Scholar 

  • Lormand C, Zellmer GF, Sakamoto N, Ubide T, Kilgour G, Yurimoto H, Palmer A, Németh K, IIzuka Y, Moebis A (2021) Shallow magmatic processes revealed by cryptic microantecrysts: a case study from the Taupo Volcanic Zone. Contrib Mineral Petrol. https://doi.org/10.1007/s00410-021-01857-7

  • Macdonald GA (1944) The 1840 eruption and crystal differentiation in the Kilauean magma column. Am J Sci 242(4):177–189

    Article  Google Scholar 

  • MacKenzie WS, Donaldson CH, Guilford C (1982) Atlas of igneous rocks and their textures. Wiley, p 148

  • Mangler MF, Petrone CM, Hill S, Delgado-Granados H, Prytulak J (2020) A pyroxenic view on magma hybridization and crystallization at Popocatépetl Volcano, Mexico. Front Earth Sci 8. https://doi.org/10.3389/feart.2020.00362

  • Martel C, Radadi Ali A, Poussineau S, Gourgaud A, Pichavant M (2006) Basalt-inherited microlites in silicic magmas: Evidence from Mount Pelée (Martinique, French West Indies). Geology 34(11):905–908. https://doi.org/10.1130/G22672A.1

    Article  Google Scholar 

  • McCanta M, Rutherford M, Hammer J (2007) Pre-eruptive and syn-eruptive conditions in the Black Butte, California dacite: insight into crystallization kinetics in a silicic magma system. J Volcanol Geoth Res 160:263–284

    Article  Google Scholar 

  • Melnik OE, Blundy JD, Rust AC, Muir DD (2011) Subvolcanic plumbing systems imaged through crystal size distributions. Geology 39:403–406

    Article  Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geoth Res 167(1):282–299

    Article  Google Scholar 

  • Miwa T, Geshi N (2012) Decompression rate of magma at fragmentation: inference from broken crystals in pumice of vulcanian eruption. J Volcanol Geoth Res 227:76–84

    Article  Google Scholar 

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geoth Res 154:1–7

    Article  Google Scholar 

  • Mujin M, Nakamura M, Miyake A (2017) Eruption style and crystal size distributions: crystallization of groundmass nanolites in the 2011 Shinmoedake eruption. Am Miner 102(12):2367–2380

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills volcano, Montserrat, West Indies. J Petrol 41:21–42

    Article  Google Scholar 

  • Neave DA, Passmore E, Maclennan J, Fitton G, Thordarson T (2013) Crystal–melt relationships and the record of deep mixing and crystallization in the ad 1783 Laki Eruption, Iceland. J Petrol 54(8):1661–1690

    Article  Google Scholar 

  • Ogle KN (1951) On the resolving power of the human eye. J Opt Soc Am 41(8):517–520

    Article  Google Scholar 

  • Rout SS, Blum-Oeste M, Wörner G (2021) Long-term temperature cycling in a shallow magma reservoir: insights from sanidine megacrysts at Taápaca Volcano, central Andes. J Petrol 62:#egab010

    Article  Google Scholar 

  • Ruth DCS, Costa F (2021) A petrological and conceptual model of Mayon Volcano (Philippines) as an example of an open-vent volcano. Bull Volcanol 83:1–28

    Article  Google Scholar 

  • Sollas WJ (1892) On the volcanic district of Carlingford and Slieve Gullion. Part I. : On the Relation of the Granite to the Gabbro of Barnavave, Carlingford. Trans R Ir Acad 30:477–512

    Google Scholar 

  • Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354

    Article  Google Scholar 

  • Taddeucci J, Cimarelli C, Alatorre-Ibargüengoitia MA, Delgado-Granados H, Andronico D, Del Bello E, Scarlato P, Di Stefano F (2021) Fracturing and healing of basaltic magmas during explosive volcanic eruptions. Nat Geosci 14(4):248–254

    Article  Google Scholar 

  • Welsch B, Faure F, Bachèlery P, Famin V (2009) Microcrysts record transient convection at Piton de la Fournaise Volcano (La Réunion Hotspot). J Petrol 50(12):2287–2305

    Article  Google Scholar 

  • Winter JD (2014) Principles of igneous and metamorphic petrology. Pearson Education Limited, p 738

  • Zellmer GF, Freymuth H, Cembrano JM, Clavero JE, Veloso EAE, Sielfeld GG (2014) Altered mineral uptake into fresh arc magmas: insights from U-Th isotopes of samples from Andean volcanoes under differential crustal stress regimes. In: Gomez-Tuena A, Straub SM, Zellmer GF (eds) Orogenic andesites and crustal growth, vol 385. Geological Society, London, Special Publications, pp 185–208

    Google Scholar 

  • Zellmer GF, Kimura J-I, Stirling CH, Lube G, Shane PA, Iizuka Y (2020) Genesis of Recent Mafic Magmatism in the Taupo Volcanic Zone, New Zealand: Insights into the Birth and Death of Very Large Volume Rhyolitic Systems? J Petrol 61(2). https://doi.org/10.1093/petrology/egaa027

Download references

Acknowledgements

GFZ thanks several members of the community for comments, discussions, and feedback during the drafting of this perspective, particularly Don Baker, Scott Bryan, Michele Lustrino, Silvio Mollo, Michihiko Nakamura, and Chiara Petrone. Mayumi Mujin and Charline Lormand kindly provided some images. Constructive reviews by Teresa Ubide and an anonymous reviewer, and the editorial handling and feedback of Jacopo Taddeucci, improved this paper. Support through a Long-term International Research Fellowship of the Japan Society for the Promotion of Science to GFZ is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg F. Zellmer.

Additional information

Editorial responsibility: J. Taddeucci

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zellmer, G.F. Gaining acuity on crystal terminology in volcanic rocks. Bull Volcanol 83, 78 (2021). https://doi.org/10.1007/s00445-021-01505-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01505-9

Keywords

Navigation