Skip to main content
Log in

An overview and recent advances in electrocatalysts for direct seawater splitting

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu K, Cheng H, Lv H F, Wang J Y, Liu L Q, Liu S, Wu X J, Chu W S, Wu C Z, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322

    Article  Google Scholar 

  2. Liu T, Li P, Yao N, Cheng G Z, Chen S L, Luo W, Yin Y D. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angewandte Chemie International Edition, 2019, 58(14): 4679–1684

    Article  CAS  PubMed  Google Scholar 

  3. Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408

    Article  CAS  Google Scholar 

  4. Martindale B C M, Reisner E. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Advanced Energy Materials, 2016, 6(6): 1502095

    Article  Google Scholar 

  5. Zhang J W, Lv X W, Ren T Z, Wang Z, Bandosz T J, Yuan Z Y. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment, 2021, doi: https://doi.org/10.1016/j.gee.2020.12.009

  6. Ren J T, Chen L, Yang D D, Yuan Z Y. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263: 118352

    Article  CAS  Google Scholar 

  7. Zheng Y, Jiao Y, Vasileff A, Qiao S Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018, 57(26): 7568–7579

    Article  CAS  PubMed  Google Scholar 

  8. Ren J T, Yao Y, Yuan Z Y. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643

    Article  Google Scholar 

  9. Roger I, Shipman M A, Symes M D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003

    Article  CAS  Google Scholar 

  10. Lv X W, Hu Z P, Chen L, Ren J T, Liu Y P, Yuan Z Y. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778

    Article  CAS  Google Scholar 

  11. Zhang J W, Zhang H, Ren T Z, Yuan Z Y, Bandosz T J. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287

    Article  Google Scholar 

  12. Ji X X, Lin Y H, Zeng J, Ren Z H, Lin Z J, Mu Y B, Qiu Y J, Yu J. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12(1): 1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Kim S J, Liu J P, Gao Y, Choi S B, Han J W, Shin H Y, Jo S G, Kim J W, Ciucci F, et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4(3): 212–222

    Article  Google Scholar 

  14. Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2012, 100(2): 410–426

    Article  CAS  Google Scholar 

  15. Zhao H, Yuan Z Y. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14(1): 130–149

    Article  CAS  PubMed  Google Scholar 

  16. Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

    Article  CAS  PubMed  Google Scholar 

  17. Weng C C, Ren J T, Yuan Z Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375

    Article  CAS  PubMed  Google Scholar 

  18. Ren J T, Song Y J, Yuan Z Y. Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32: 78–84

    Article  Google Scholar 

  19. Cuartero M, Crespo G, Cherubini T, Pankratova N, Confalonieri F, Massa F, Tercier-Waeber M L, Abdou M, Schäfer J, Bakker E. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Analytical Chemistry, 2018, 90(7): 4702–4710

    Article  CAS  PubMed  Google Scholar 

  20. Xiang C, Papadantonakis K M, Lewis N S. Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3(3): 169–173

    Article  CAS  Google Scholar 

  21. Tong W, Forster M, Dionigi F, Dresp S, Sadeghi Erami R, Strasser P, Cowan A J, Farràs P. Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5(5): 367–377

    Article  CAS  Google Scholar 

  22. Kester D R, Duedall I W, Connors D N, Pytkowicz R M. Preparation of artifcicial seawater. Limnology and Oceanography, 1967, 12(1): 176–179

    Article  CAS  Google Scholar 

  23. Yu L, Zhu Q, Song S, McElhenny B, Wang D, Wu C, Qin Z, Bao J, Yu Y, Chen S, Ren Z. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dionigi F, Reier T, Pawolek Z, Gliech M, Strasser P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem, 2016, 9(9): 962–972

    Article  CAS  PubMed  Google Scholar 

  25. Exner K S, Sohrabnejad-Eskan I, Over H. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catalysis, 2018, 8(3): 1864–1879

    Article  CAS  Google Scholar 

  26. Exner K S, Anton J, Jacob T, Over H. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angewandte Chemie International Edition, 2014, 53(41): 11032–11035

    Article  CAS  PubMed  Google Scholar 

  27. Ysea N, Diaz L A, Lacconi G I, Franceschini E A. Stability study of materials for electrode supports for the hydrogen generation from a NaCl aqueous solution. Electrocatalysis, 2021, 12(5): 537–547

    Article  CAS  Google Scholar 

  28. Auinger M, Katsounaros I, Meier J C, Klemm S O, Biedermann P U, Topalov A A, Rohwerder M, Mayrhofer K J J. Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 2011, 13(36): 16384–16394

    Article  CAS  PubMed  Google Scholar 

  29. Katsounaros I, Meier J C, Klemm S O, Topalov A A, Biedermann P U, Auinger M, Mayrhofer K J J. The effective surface pH during reactions at the solid-liquid interface. Electrochemistry Communications, 2011, 13(6): 634–637

    Article  CAS  Google Scholar 

  30. Kirk D W, Ledas A E. Precipitate formation during sea water electrolysis. International Journal of Hydrogen Energy, 1982, 7(12): 925–932

    Article  CAS  Google Scholar 

  31. Bennett J E. Electrodes for generation of hydrogen and oxygen from seawater. International Journal of Hydrogen Energy, 1980, 5(4): 401–408

    Article  CAS  Google Scholar 

  32. Wu X, Zhou S, Wang Z, Liu J, Pei W, Yang P, Zhao J, Qiu J. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333

    Article  Google Scholar 

  33. Gao S, Li G D, Liu Y, Chen H, Feng L L, Wang Y, Yang M, Wang D, Wang S, Zou X. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7(6): 2306–2316

    Article  CAS  PubMed  Google Scholar 

  34. Karlsson R K B, Cornell A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chemical Reviews, 2016, 116(5): 2982–3028

    Article  CAS  PubMed  Google Scholar 

  35. Oh B S, Oh S G, Hwang Y Y, Yu H W, Kang J W, Kim I S. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Science of the Total Environment, 2010, 408(23): 5958–5965

    Article  CAS  Google Scholar 

  36. Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater. Materials Transactions, 1997, 38(10): 899–905

    Article  CAS  Google Scholar 

  37. Izumiya K, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Hashimoto K. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43(21): 3303–3312

    Article  CAS  Google Scholar 

  38. Niu J, Yang J, Channa A I, Ashalley E, Yang J, Jiang J, Li H, Ji H, Niu X. Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Advances, 2020, 10(45): 27235–27241

    Article  CAS  Google Scholar 

  39. Gupta S, Forster M, Yadav A, Cowan A J, Patel N, Patel M. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Applied Energy Materials, 2020, 3(8): 7619–7628

    Article  CAS  Google Scholar 

  40. Fujimura K, Matsui T, Habazaki H, Kawashima A, Kumagai N, Hashimoto K. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45(14): 2297–2303

    Article  CAS  Google Scholar 

  41. Dresp S, Dionigi F, Loos S, Ferreira de Araujo J, Spöri C, Gliech M, Dau H, Strasser P. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials, 2018, 8(22): 1800338

    Article  Google Scholar 

  42. Yu L, Wu L B, McElhenny B, Song S W, Luo D, Zhang F H, Yu Y, Chen S, Ren Z F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020, 13(10): 3439–3446

    Article  CAS  Google Scholar 

  43. Wang C Z, Zhu M Z, Cao Z Y, Zhu P, Cao Y Q, Xu X Y, Xu C X, Yin Z Y. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021, 291: 120071

    Article  CAS  Google Scholar 

  44. Petrykin V, Macounova K, Shlyakhtin O A, Krtil P. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angewandte Chemie International Edition, 2010, 49(28): 4813–4815

    Article  CAS  PubMed  Google Scholar 

  45. Gayen P, Saha S, Ramani V. Selective seawater splitting using pyrochlore electrocatalyst. ACS Applied Energy Materials, 2020, 3(4): 3978–3983

    Article  CAS  Google Scholar 

  46. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926

    Article  Google Scholar 

  47. Surendranath Y, Dincă M, Nocera D G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society, 2009, 131(7): 2615–2620

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Q J, Zhao X J, Miao X J, Yang W T, Wang C T, Pan Q H. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45(58): 33028–33036

    Article  CAS  Google Scholar 

  49. Cheng F F, Feng X L, Chen X, Lin W G, Rong J F, Yang W S. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochimica Acta, 2017, 251: 336–343

    Article  CAS  Google Scholar 

  50. Vos J G, Wezendonk T A, Jeremiasse A W, Koper M T M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. Journal of the American Chemical Society, 2018, 140(32): 10270–10281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang W H, Lin C Y. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215: 205–215

    Article  CAS  PubMed  Google Scholar 

  52. Jadhav A R, Kumar A, Lee J J, Yang T H, Na S Y, Lee J S, Luo Y G, Liu X H, Hwang Y, Liu Y, Lee H. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(46): 24501–24514

    Article  CAS  Google Scholar 

  53. Balaji R, Kannan B S, Lakshmi J, Senthil N, Vasudevan S, Sozhan G, Shukla A K, Ravichandran S. An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11(8): 1700–1702

    Article  CAS  Google Scholar 

  54. Kuang Y, Kenney M J, Meng Y, Hung W H, Liu Y, Huang J E, Prasanna R, Li P, Li Y, Wang L, et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fujimura K, Matsui T, Izumiya K, Kumagai N, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis. Materials Science and Engineering A, 1999, 267(2): 254–259

    Article  Google Scholar 

  56. Abdel Ghany N A, Kumagai N, Meguro S, Asami K, Hashimoto K. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochimica Acta, 2002, 48(1): 21–28

    Article  CAS  Google Scholar 

  57. El-Moneim A A, Kumagai N, Asami K, Hashimoto K. Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Materials Transactions, 2005, 46(2): 309–316

    Article  CAS  Google Scholar 

  58. El-Moneim A A, Kumagai N, Hashimoto K. Mn-Mo-W oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. Materials Transactions, 2009, 50(8): 1969–1977

    Article  CAS  Google Scholar 

  59. Kato Z, Bhattarai J, Kumagai N, Izumiya K, Hashimoto K. Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production. Applied Surface Science, 2011, 257(19): 8230–8236

    Article  CAS  Google Scholar 

  60. Kato Z, Sato M, Sasaki Y, Izumiya K, Kumagai N, Hashimoto K. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochimica Acta, 2014, 116: 152–157

    Article  CAS  Google Scholar 

  61. Trasatti S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 1984, 29(11): 1503–1512

    Article  CAS  Google Scholar 

  62. Obata K, Takanabe K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2018, 57(6): 1616–1620

    Article  CAS  PubMed  Google Scholar 

  63. Yang F, Luo Y, Yu Q, Zhang Z, Zhang S, Liu Z, Ren W, Cheng H M, Li J, Liu B. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm−2. Advanced Functional Materials, 2021, 31(21): 2010367

    Article  CAS  Google Scholar 

  64. Jakšić M M. Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochimica Acta, 1984, 29(11): 1539–1550

    Article  Google Scholar 

  65. Zheng J J, Zhao Y Y, Xi H, Li C H. Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M = Cr, Fe, Co, Ni, Mo) incorporated Pt. RSC Advances, 2018, 8(17): 9423–9429

    Article  CAS  Google Scholar 

  66. Li H Y, Tang Q W, He B L, Yang P Z. Robust electrocatalysts from an alloyed Pt-Ru-M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6513–6520

    Article  CAS  Google Scholar 

  67. Camöes M F, Anes B, Oliveira C S, Jorge M E M. Surface changes at platinized platinum based hydrogen gas electrodes following use in highly saline aqueous solutions. Electroanalysis, 2014, 26(9): 1952–1957

    Article  Google Scholar 

  68. Yuan W, Cui Z, Zhu S, Li Z, Wu S, Liang Y. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochimica Acta, 2021, 365: 137366

    Article  CAS  Google Scholar 

  69. Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shang L, Zhao Y, Kong X Y, Shi R, Waterhouse G I N, Wen L, Zhang T. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78: 105375

    Article  CAS  Google Scholar 

  71. Song L J, Meng H M. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater. International Journal of Hydrogen Energy, 2010, 35(19): 10060–10066

    Article  CAS  Google Scholar 

  72. Dinh C T, Jain A, de Arquer F P G, De Luna P, Li J, Wang N, Zheng X, Cai J, Gregory B Z, Voznyy O, et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4(2): 107–114

    Article  CAS  Google Scholar 

  73. Jin H, Liu X, Vasileff A, Jiao Y, Zhao Y, Zheng Y, Qiao S Z. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano, 2018, 12(12): 12761–12769

    Article  CAS  PubMed  Google Scholar 

  74. Zang W, Sun T, Yang T, Xi S, Waqar M, Kou Z, Lyu Z, Feng Y P, Wang J, Pennycook S J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33(8): 2003846

    Article  CAS  Google Scholar 

  75. Yu L, Wu L B, Song S W, McElhenny B, Zhang F H, Chen S, Ren Z F. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN∣NixP∣NiCoN microsheet array catalyst. ACS Energy Letters, 2020, 5(8): 2681–2689

    Article  CAS  Google Scholar 

  76. Endrödi B, Sandin S, Smulders V, Simic N, Wildlock M, Mul G, Mei B T, Cornell A. Towards sustainable chlorate production: the effect of permanganate addition on current efficiency. Journal of Cleaner Production, 2018, 182: 529–537

    Article  Google Scholar 

  77. Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798

    Article  CAS  Google Scholar 

  78. Gao X, Zhang H, Li Q, Yu X, Hong Z, Zhang X, Liang C, Lin Z. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294

    Article  CAS  PubMed  Google Scholar 

  79. Ren J T, Yuan Z Y. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7203–7210

    Article  CAS  Google Scholar 

  80. Lv X W, Hu Z P, Ren J T, Liu Y P, Wang Z, Yuan Z Y. Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6(1): 74–81

    Article  CAS  Google Scholar 

  81. Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347

    Article  CAS  Google Scholar 

  82. Ling T, Yan D Y, Wang H, Jiao Y, Hu Z, Zheng Y, Zheng L, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8(1): 1509

    Article  PubMed  PubMed Central  Google Scholar 

  83. Song F Z, Li W, Yang J Q, Han G Q, Liao P L, Sun Y J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9(1): 4531

    Article  PubMed  PubMed Central  Google Scholar 

  84. Han N N, Yang K R, Lu Z Y, Li Y J, Xu W W, Gao T F, Cai Z, Zhang Y, Batista V S, Liu W, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9(1): 924

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L, et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16(9): 925–931

    Article  CAS  PubMed  Google Scholar 

  86. Lv X W, Tian W W, Liu Y P, Yuan Z Y. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries. Materials Chemistry Frontiers, 2019, 3(11): 2428–2436

    Article  CAS  Google Scholar 

  87. Duan S, Liu Z, Zhuo H H, Wang T Y, Liu J Y, Wang L, Liang J S, Han J T, Huang Y H, Li Q. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12(42): 21743–21749

    Article  CAS  PubMed  Google Scholar 

  88. Wu L B, Yu L, Zhang F H, McElhenny B, Luo D, Karim A, Chen S, Ren Z F. Heterogeneous bimetallic phosphide Ni2P-Fe2Pasan efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1): 2006484

    Article  CAS  Google Scholar 

  89. Zhao Y Q, Jin B, Vasileff A, Jiao Y, Qiao S Z. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8117–8121

    Article  CAS  Google Scholar 

  90. Ros C, Murcia-López S, Garcia X, Rosado M, Arbiol J, Llorca J, Morante J R. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe OER/HER bifunctional electrocatalyst. Chem-SusChem, 2021, 14(14): 2872–2881

    CAS  Google Scholar 

  91. Xu S S, Lv X W, Zhao Y M, Ren T Z, Yuan Z Y. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52: 139–146

    Article  Google Scholar 

  92. Zhao H, Yuan Z Y. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54: 89–104

    Article  Google Scholar 

  93. Hsu S H, Miao J, Zhang L, Gao J, Wang H, Tao H, Hung S F, Vasileff A, Qiao S Z, Liu B. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261

    Article  Google Scholar 

  94. Vincent I, Bessarabov D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable & Sustainable Energy Reviews, 2018, 81: 1690–1704

    Article  CAS  Google Scholar 

  95. Carmo M, Fritz D L, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12): 4901–4934

    Article  CAS  Google Scholar 

  96. Chae K J, Choi M, Ajayi F F, Park W, Chang I S, Kim I S. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1): 169–176

    Article  CAS  Google Scholar 

  97. Müller M, Carmo M, Glüsen A, Hehemann M, Saba S, Zwaygardt W, Stolten D. Water management in membrane electrolysis and options for advanced plants. International Journal of Hydrogen Energy, 2019, 44(21): 10147–10155

    Article  Google Scholar 

  98. Dresp S, Ngo Thanh T, Klingenhof M, Brückner S, Hauke P, Strasser P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729

    Article  CAS  Google Scholar 

  99. Kumari S, Turner White R, Kumar B, Spurgeon J M. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science, 2016, 9(5): 1725–1733

    Article  CAS  Google Scholar 

  100. Kida T, Kuwaki Y, Miyamoto A, Hamidah N L, Hatakeyama K, Quitain A T, Sasaki M, Urakawa A. Water vapor electrolysis with proton-conducting graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11753–11758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22111530112 and 21875118), the Natural Science Foundation of Tianjin (Grant No. 19JCZDJC37700), and the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Grant No. 2020-KF-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Yong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HY., Weng, CC., Ren, JT. et al. An overview and recent advances in electrocatalysts for direct seawater splitting. Front. Chem. Sci. Eng. 15, 1408–1426 (2021). https://doi.org/10.1007/s11705-021-2102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2102-6

Keywords

Navigation