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Abstract. To assess the skill of predictions of the seasonal-to-interannual detrended sea ice extent in the Arctic Ocean 

(SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on January 1st, April 1st, 

July 1st, and October 1st for each year from 1980 to 2011, for lead times of up three years, using the Model for 10 

Interdisciplinary Research on Climate (MIROC) version 5 initialized with the observed atmosphere and ocean anomalies and 

sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 1 year 

ahead. This skill is attributed to the subsurface ocean heat content originating in the North Atlantic. The subsurface water 

flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects 

the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to 3 months, due to 15 

the persistence of sea ice in the Beaufort, Chukchi, and East Siberian Seas initialized in July, as suggested by previous 

studies. 

1 Introduction 

The Arctic has warmed more than twice as much as the global average (e.g., Bekryaev et al., 2010; Cohen et al., 

2014), called Arctic amplification. Sea ice reduction under climate change is one of the main processes contributing to Arctic 20 

amplification (e.g., Pithan and Mauritsen, 2014). Arctic summer sea ice extent has declined at about 14 % per decade 

(National Snow and Ice Data Center, 2016, http://nsidc.org/arcticseaicenews/). In September 2012, sea ice extent reached its 

minimum since satellite observations began in the late 1970s. An even more serious problem is the decline in Arctic sea ice 

thickness (Kwok et al., 2009), which has decreased by around 65 % from 1975 to 2012 (Lindsay and Schweiger, 2015). 

In contrast to the rapid warming in the Arctic, severely cold winters have occurred more frequently at midlatitudes. 25 

Although the exact cause is still being debated (e.g., Barnes and Screen, 2015), Mori et al. (2014) have shown, using 

ensemble experiments with an atmospheric general circulation model, that the more frequent cold winters at midlatitudes can 

be partly explained by the sea ice decrease in the Barents and Kara Seas. Therefore, further investigation of the mechanisms 

driving Arctic sea ice variability is of great importance for more accurate predictions of climate change, not only in the 

Arctic but also for the midlatitudes. 30 
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A previous study based on two- or five-year perfect-model experiments from January 1st and September 1st has 

shown that the potential predictability for sea ice extent is continuously one to two years, primarily because of the 

persistence of ice thickness anomalies from summer to summer and the persistence of sea surface temperature anomalies 

from the melt to growth seasons (Blanchard-Wrigglesworth et al., 2011a; Guemas et al., 2014). These features are also found 

in the results of experiments comparing multiple climate models (Day et al., 2014b; Tietsche et al., 2014). The observed 5 

Arctic sea ice extent based on ensemble hindcasts can be predicted up to 2–7 and 5–11 months ahead for summer and winter, 

respectively (e.g., Chevallier et al., 2013; Sigmond et al., 2013; Wang et al., 2013; Msadek et al., 2014; Peterson et al., 2015; 

Guemas et al., 2016; Sigmond et al., 2016). In these ensemble hindcasts, it is found that the ice thickness and the surface or 

subsurface water temperatures are closely related to the prediction skill, as suggested by idealized or perfect-model 

experiments with climate models (e.g., Blanchard-Wrigglesworth et al., 2011b; Chevallier and Salas-Mélia, 2012; Day et al., 10 

2014a). 

Until very recently, the mechanisms by which the above variables contribute to the prediction skill had not been 

quantified. Bushuk et al. (2017) examined the physical mechanisms underlying the prediction skill of regional sea ice extent 

and showed for the first time the importance of the initializations of ocean subsurface and sea ice thickness in their 

dynamical prediction system. 15 

Motivated by the above studies, we first conduct initialized ensemble hindcasts using a climate model to assess the 

predictability of seasonal-to-interannual sea ice extent in the Arctic Ocean and further investigate sources for prediction skill 

and clarify the physical processes linking the prediction skill to its sources. In particular, the present study reveals that 

subsurface ocean heat content originating from the North Atlantic contributes to the predictability of winter sea ice through 

advection and vertical mixing processes, which is somewhat different from the reemergence process of the local subsurface 20 

ocean temperature suggested by Bushuk et al. (2017). 

2 Experimental Designs 

The climate model used here is a low-resolution version of the Model for Interdisciplinary Research on Climate, 

version 5 (MIROC5) (Watanabe et al., 2010), which contributed to the fifth phase of the Coupled Model Intercomparison 

Project and the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5, 2013). The atmospheric 25 

component has a horizontal resolution of T42 spectral truncation (approximately 2.8°) and comprises 40 vertical layers up to 

3 hPa. The oceanic component has horizontal resolutions of 1.4° in longitude and 0.5–1.4° in latitude, and comprises 50 

vertical layers. The sea ice component of MIROC5 contains one-layer thermodynamics (Bitz and Lipscomb, 1999), elastic-

viscous-plastic rheology (Hunke and Dukowicz, 1997), and the subgrid ice thickness distribution (Bitz et al., 2001) with five 

categories: the detailed structure has been described in Komuro et al. (2012). 30 

To initialize MIROC5, we adopted anomaly assimilation for the atmosphere and ocean and full-field assimilation 

for sea ice. Anomalies were calculated as the deviations from the climatology defined by the 1961–2000 period. The 

observed 6-hourly air temperature and wind vectors from the 55-year Japanese Reanalysis (JRA-55) dataset (Kobayashi et 
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al., 2015) were linearly interpolated to the atmospheric model’s grid. The observed monthly temperature, salinity, and sea ice 

concentration (SIC) from the gridded monthly objective analysis produced by Ishii et al. (2006) and Ishii and Kimoto (2009) 

were linearly interpolated to obtain the daily values, and the same grid as the ocean model. In the assimilation runs, the 

atmospheric anomalies were assimilated into MIROC5 below 100 hPa at 6-hourly intervals and the oceanic anomalies above 

3000 m depth at one-day intervals except in sea ice regions, using a modified incremental analysis update scheme (Tatebe et 5 

al., 2012). Meanwhile, SIC was assimilated at one-day intervals following Lindsay and Zhang (2006) and Stark et al. (2008). 

These assimilations were conducted over the period 1975–2011 with eight ensemble members produced by perturbing the 

sea surface temperature based on the observational errors. The atmospheric and oceanic initial states were obtained from a 

non-initialized twentieth-century run with historical natural and anthropogenic forcings. 

On the basis of the assimilation runs, the hindcast experiments were integrated for 3 years from January 1st, 2 years 10 

and 9 months from April 1st, 2 years and 6 months from July 1st and 2 years and 3 months from October 1st for each year 

from 1980 to 2011. The initial states of the atmosphere and ocean were obtained from the corresponding assimilation runs. 

In addition, a control run with MIROC version 5.2, which is a minor update of MIROC5, was used to interpret the physical 

processes contributing to the prediction skill in the hindcasts. This simulation was run with external forcings fixed at the year 

2000 levels under a multi-model inter-comparison project (Day et al., 2016). 15 

In Sect. 3 and Sect. 4, we analyze the detrended monthly anomalies to extract the internal variations with seasonal-

to-interannual timescales. Here, the detrended components were calculated by subtracting monthly linear trends during 

1980–2009 from the original monthly data, and anomalies are defined as deviations from the climatology from 1980–2009. 

Moreover, climate drifts in the hindcasts are removed according to the INTERNATIONAL CLIVAR PROJECT OFFICE 

(ICPO, 2011). As mentioned in Sect. 1, sea ice reduction in the Arctic Ocean, especially in the Barents and Kara Seas, could 20 

lead to extreme weather at midlatitudes, which may be related to the warming of the Arctic Ocean interior (e.g., Polyakov et 

al., 2012). To clearly interpret the physical mechanisms influencing sea ice extent in the Arctic Ocean (hereafter SIEAO), 

SIEAO is defined from the cumulative area for all grid cells north of 65° N with SIC greater than 15 %. Note that Hudson Bay 

and Baffin Bay are excluded. For comparison, the results for the detrended sea ice extent anomaly in the Northern 

Hemisphere are shown in the supporting information. 25 

3 Predictability of Arctic Sea Ice Extent 

We first examine the potential predictability of SIEAO (Fig. 1), based on the lagged auto-correlation coefficients, 

which is called the persistence forecast. The lagged correlations with the observations (Ishii et al. (2006) and Ishii and 

Kimoto (2009)) decrease within the first few months for all of the start months, and those originating between January and 

June subsequently rise again in the winter (November through March). In addition, the correlation coefficients are higher 30 

than those shown in Day et al. (2014b), for example, at a lead time of one month for May. This may be due to differences in 

the observations, temporal periods, and areas used for calculating the sea ice extent (Fig. S1). Significant skill in the control 
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run is obtained for greater lead times than in the observations, which is consistent with previous studies (e.g., Blanchard-

Wrigglesworth et al., 2011b; Day et al., 2014b). 

We next evaluate the SIEAO prediction skill (Figs. 2a and 2b), with the anomaly correlation coefficient (ACC) and 

the root-mean-square error (RMSE) between the detrended observations and the hindcasts (e.g., Wang et al., 2013). In the 

hindcasts started from July 1st, the ACC for September is statistically significant and exceeds that of the persistence forecast, 5 

suggesting that September SIEAO can be dynamically predicted from the previous July. Although the significance of the 

ACC is borderline, the results suggest September SIEAO is potentially predictable from April 1st, which is consistent with the 

results of Peterson et al. (2015). The ACC is also significant for the winter SIEAO, in particular for December, except for the 

hindcasts started from April 1st, indicating the potential use of dynamical forecasts up to 1 year ahead. The RMSE for all 

hindcasts increases throughout the melting and early freezing seasons (July–October), before decreasing in November–June. 10 

These seasonal changes in the RMSE are consistent with past studies (e.g., Tietsche et al., 2014). The time series of 

September SIEAO shows that both the assimilation and hindcasts capture the observed interannual variability, although the 

model underestimates the variability in the mid- to late 1980s and in the extreme year 2007 (Fig. 2c). The observed SIEAO in 

December is contained within the ensemble spread, excluding the mid-1980s (Fig. 2d). We also show the same figure as Fig. 

2 in Fig. S2, except that the detrended sea ice extent anomaly is calculated in the Northern Hemisphere. Although the RMSE 15 

in winter is high (Fig. S2b) compared to Fig. 2b, there are no significant differences. 

4 Possible Mechanisms for Prediction Skill 

Focusing on both the hindcasts started from January 1st, in which the December SIEAO has high skill even at the 

longest lead-time, and those started from July 1st, in which only the September SIEAO is significant, we examine 

mechanisms for the prediction skill. Figure 3 shows the lagged cross-correlations between the SIEAO and the sea ice volume 20 

in the Arctic Ocean (SIVAO) and those between SIEAO and ocean heat content in the Arctic Ocean (OHCAO) for the control 

run and the hindcasts started from January and July. Here, the SIVAO is defined as the sum of the grid cell volumes obtained 

by multiplying the sea ice thickness (SIT) by the SIC for grid cells with SIC greater than 15 % and the OHCAO is the 

vertically integrated temperature multiplied by the density and specific heat capacity of seawater from the mixed layer depth 

(MLD) to a depth of 200 m, in the area north of 65° N. The MLD is defined as the depth at which the potential density 25 

differs from that of the surface by 0.01 kg m-3. 

The SIVAO has stronger positive correlations with the SIEAO in summer than in winter (Figs. 3a–c), which is 

consistent with Chevallier and Salas-Mélia (2012), while the OHCAO has more persistent negative correlations with the 

SIEAO in winter than in summer (Figs. 3d–f). In the hindcasts started from January 1st, the December SIEAO is significantly 

correlated with the OHCAO from May to December. In the hindcasts started from July 1st, the SIEAO in September is 30 

significantly correlated with the SIVAO in July, but not with the OHCAO. Thus, sources for the prediction skill of the 

December and September SIEAO are suggested to be the subsurface OHCAO after May through December and the sea ice 

states in July, respectively. For the sea ice extent anomaly calculated in the Northern Hemisphere (Fig. S3), the patterns of 
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lagged correlation coefficients are broadly similar to those in Fig. 3, but the correlations in the control are stronger and those 

in the hindcasts are weaker. One reason might be the contribution of sea ice variability south of 65° N. 

We next clarify the physical processes linking the prediction skill to sources of that skill. Figure 4 shows the SIC, 

SIT, and OHC north of 60° N regressed on the December SIEAO. We also show the same figure as Fig. 4 except that the 

detrended sea ice extent anomaly is calculated in the Northern Hemisphere (Fig. S4). The most significant signals for both 5 

SIC and SIT are found in the Barents Sea (BS) of the Arctic Ocean (Figs. 4a and 4b). It is well known that winter sea ice 

variability in the BS dominates that in the Arctic Ocean (e.g., Smedsrud et al., 2013), which is consistent with our results. At 

a lag of 9 months (Fig. 4c), negative correlation and regression coefficients for the OHC are found off the western coast of 

the Scandinavian Peninsula. Their signals become stronger along the Norwegian Atlantic Current pathway and in the 

western part of the BS at a lag of 6 months (Fig. 4d), and further extend across the entire BS at a lag of 3 months (Fig. 4e). 10 

Eventually, the signals reach the eastern part of the BS at a lag of zero (Fig. 4f), and disappear in the western part of the BS 

where the positive SIC regression coefficient is highly significant (Fig. 4a) and the OHC from the surface to the MLD shows 

significant negative correlation and regression patterns (Fig. S5). These results are indirect evidence of the subsurface OHC 

emergence to the surface by vertical mixing in winter. 

The above features are also found in the control run (Fig. S6), suggesting that the advection processes of the OHC 15 

in the hindcasts are not due to processes distorted by the influence of initialization or climate drift in MIROC5. Hence, the 

OHC anomalies initialized in the North Atlantic flow into the BS through advection, subsequently emerge at the surface due 

to vertical mixing in winter, and affect the December sea ice distribution in the BS and eventually in the Arctic Ocean. This 

is one of the reasons why the hindcasts started from January 1st have significant skill for the December SIEAO. As suggested 

by Bushunk et al. (2017), our results also suggest that the initialization of subsurface ocean temperature contributes to the 20 

skillful prediction of the winter sea ice extent in the BS. However, the underlying mechanisms are partly different in that the 

advection process from the North Atlantic is important in our results, which is consistent with results based on statistical 

methods using reanalysis data (e.g., Nakanowatari et al., 2014). 

For September, the persistence of sea ice states initialized in July persists until September in the Beaufort, Chukchi, 

and East Siberian Seas (Fig. S7), which is consistent with Bushuk et al. (2017). Consequently, this persistence contributes to 25 

the prediction skill of the September SIEAO. In contrast, possible mechanisms or sources cannot be detected in the hindcasts 

started from April 1st (Fig. S8), at least from the lagged correlation and regression analyses, although the September SIEAO 

is weakly correlated with the SIVAO and the OHCAO. 

5 Concluding Remarks 

 We investigated the predictability of the detrended SIEAO anomaly and its sources based on an ensemble of 30 

hindcasts using an initialized climate model, MIROC5, and further identified physical processes related to the prediction 

skill. Prediction skill for Arctic winter SIEAO is significantly higher than the persistence forecast, especially for December, 

indicating the possibility for dynamical forecasting one year ahead. The December SIEAO is significantly correlated with the 
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December SIC and SIT in the BS where the subsurface OHC anomalies are advected from the North Atlantic, and 

subsequently emerge at the surface in winter, and contribute to the sea ice variability there. Our results suggest that sources 

of the December SIEAO prediction skill exist in the North Atlantic and thus initialization of the subsurface water there leads 

to better prediction of the SIEAO in December. Numerical experiments to confirm whether the subsurface OHC anomalies 

originating from the North Atlantic control the December sea ice extent in the BS and eventually in the Arctic Ocean will be 5 

explored in future work. 

 Significant skill for the September SIEAO is seen only up to 3 months ahead. Nevertheless, we note that the forecast 

skill of summer SIEAO is not necessarily low, because the hindcasts initialized in January and April have significant skills for 

SIEAO in August and September. Improvement in the prediction skill for summer SIEAO is dependent upon refinement of the 

initial state of the SIT. In fact, higher lagged correlations between the summer SIEAO and the SIVAO suggest the initialization 10 

of the SIT is important, which is consistent with previous results by Day et al. (2014a) and Bushuk et al. (2017). 

 In recent years, the rapid reduction in Arctic sea ice has enabled ships to navigate the Northern Sea Route (e.g., 

Stephenson et al., 2014). Under such maritime activities in the Arctic Ocean, forecasts of the local sea ice distribution rather 

than the total sea ice extent become of greater interest for marine users. Recent studies have reported the forecast skills of the 

retreat and advance dates of the sea ice distribution based on statistical methods (e.g., Stroeve et al., 2016; Wang et al., 2016) 15 

as well as a dynamical forecast system (Sigmond et al., 2016; Bushuk et al., 2017). In the present study, our hindcasts could 

not reproduce precise sea-ice edges from summer to fall. For example, the predicted sea ice distributions in September 2007 

are overestimated in the Russian region of the Arctic Ocean. This is because the surface winds, which are thought to be the 

major driving force of sea ice motion in September 2007, are not adequately predicted. Other reasons might be the lower 

resolution of the ocean model or bias in the climatology. Further improvements in the predictability of sea ice, including its 20 

spatial pattern, will be provided by climate models with higher resolution, reduced model drift and bias, and improved 

initialization techniques. 

 

Data availability. The data for this paper can be accessed via the authors for research purposes.  

 25 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. This work was supported by the Program for Generation of Climate Change Risk Information (SOUSEI 

project) and the Arctic Challenge for Sustainability Project (ArCS Project), of the Japanese Ministry of Education, Culture, 

Sports, Science and Technology. J.O. was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for 30 

Young Scientists (B) 17K12830. Numerical experiments were conducted on the Earth Simulator at the Japan Agency for 

Marine-Earth Science and Technology. We also thank Takashi Mochizuki for his helpful discussions.  

 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

7 
 

References 

“Arctic Sea Ice News & Analysis”. National Snow and Ice Data Center. Accessed 7 September 2016. 

 

Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitudes jet-stream: Can it? Has it? Will it?, 

WIREs Clim Change 2015, 6:277-286, doi:10.1002/wcc.337, 2015. 5 

 

Bekryaev, R. V., Polyakov, I. V., and Alexeev, V. A.: Role of polar amplification in long-term surface air temperature 

variations and modern Arctic warming, J. Clim., 23, 3888-3906, doi:10.1175/2010JCLI3297.1, 2010. 

 

Bitz, C. M. and Lipscomb, W. H.: An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104, 15669-10 

15677, 1999. 

 

Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the ice-thickness distribution in a coupled climate 

model, J. Geophys. Res., 106, 2441-2463, 2001. 

 15 

Blanchard-Wrigglesworth, E., Bitz, C. M., and Holland, M. M.: Influence of initial conditions and climate forcing on 

predicting Arctic sea ice, Geophys. Res. Lett., 38, L18503, doi:10.1029/2011GL048807, 2011a. 

 

Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M., and DeWeaver, E.: Persistence and inherent predictability of 

Arctic sea ice in a GCM ensemble and observations, J. Clim., 24, 231-250, doi:10.1175/2010JCLI3775.1, 2011b. 20 

 

Bushuk, M., Msadek, R., Winton, M., Vecchi, G. A., Gudgel, R., Rosati, A., and Yang, X.: Skillful regional prediction of 

Arctic sea ice on seasonal timescales, Geophys. Res. Lett., 44, doi:10.1002/2017GL073155, 2017. 

 

Chevallier, M. and Salas-Mélia, D.: The role of sea ice thickness distribution in the Arctic sea ice potential predictability: A 25 

diagnostic approach with a coupled GCM, J. Clim., 25, 3025-3038, doi:10.1175/JCLI-D-11-00209.1, 2012. 

 

Chevallier, M., Salas-Mélia, D., Voldoire, A., and Déqué, M.: Seasonal forecasts of the Pan-Arctic sea ice extent using a 

GCM-based seasonal prediction system, J. Clim., 26, 6092-6104, doi:10.1175/JCLI-D-12-00612.1, 2013. 

 30 

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Franics, J., Dethloff, K., Entekhabi, D., 

Overland, J., and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather, Nat. Geosci., 7, 627-637, 

doi:10.1038/NGEO2234, 2014. 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

8 
 

 

Day, J. J., Hawkins, E., and Tietsche, S.: Will Arctic sea ice thickness initialization improve seasonal forecast skill?, 

Geophys. Res. Lett., 41, 7566-7575, doi:10.1002/2014GL061694, 2014a. 

 

Day, J. J., Tietsche, S., and Hawkins, E.: Pan-Arctic and regional sea ice predictability: Initialization month dependence, J. 5 

Clim., 27, 4371-4390, doi:10.1175/JCLI-D-13-00614.1, 2014b. 

 

Day, J. J., Tietsche, S., Collins, M., Goessling, H. F., Guemas, V., Guillory, A., Hurlin, W. J., Ishii, M., Keeley, S. P. E., 

Matei, D., Msadek, R., Sigmond, M., Tatebe, H., and Hawkins, E.: The Arctic predictability and prediction on seasonal-to-

interannual timescales (APPOSITE) data set version 1, Geosci. Model Dev., 9, 2255-2270, doi:10.5194/gmd-9-2255-2016, 10 

2016. 

 

Guemas, V., Blanchard-Wrigglesworth, E., Chevallier, M., Day, J. J., Déqué, M., Doblas-Reyes, F. J., Fuckar, N. S., Germe, 

A., Hawkins, E., Keeley, S., Koenigk, T., Salas y Mélia, D., and Tietsche, S.: A review on Arctic sea-ice predictability and 

prediction on seasonal to decadal time-scales, Q. J. R. Meteorol. Soc., doi:10.1002/qj.2401, 2014. 15 

 

Guemas, V., Chevallier, M., Déqué, M., Bellprat, O., and Doblas-Reyes, F.: Impact of sea ice initialization on sea ice and 

atmosphere prediction skill on seasonal timescales, Geophys. Res. Lett., 43, 3889-3896, doi:10.1002/2015GL066626, 2016. 

 

Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 1849-1867, 20 

1997. 

 

INTERNATIONAL CLIVAR PROJECT OFFICE: Decadal and bias correction for decadal climate predictions, International 

CLIVAR Project Office, CLIVAR Publication Series No. 150 (not peer reviewed), 2011. 

 25 

Ishii, M. and Kimoto, M.: Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth 

bias corrections, J. Oceanogr., 65, 287-299, doi:10.1007/s10872-009-0027-7, 2009. 

 

Ishii, M., Kimoto, M., Sakamoto, K., and Iwasaki, S. I.: Steric sea level changes estimated from historical ocean subsurface 

temperature and salinity analyses, J. Oceanogr., 62, 155-170, doi:10.1007/s10872-006-0041-y, 2006. 30 

 

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., 

Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. 

Jpn., 93, 5-48, doi:10.2151/jmsj.2015-001, 2015. 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

9 
 

 

Komuro, Y., Suzuki, T., Sakamoto, T. T., Hasumi, H., Ishii, M., Watanabe, M., Nozawa, T., Yokohata, T., Nishimura, T., 

Ogochi, K., Emori, S., and Kimoto, M.: Sea-ice in twentieth-century simulations by new MIROC coupled models: A 

comparison between models with high resolution and with ice thickness distribution, J. Meteorol. Soc. Jpn., 90A, 213–232, 

doi:10.2151/jmsj.2012-A11, 2012. 5 

 

Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., and Yi, D.: Thinning and volume loss of the Arctic 

Ocean sea ice cover: 2003-2008, J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312, 2009. 

 

Lindsay, R. and Schweiger, A.: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations, 10 

The Cryosphere, 9, 269-283, doi:10.5194/tc-9-269-2015, 2015. 

 

Lindsay, R. and Zhang, J.: Assimilation of ice concentration in an ice-ocean model, J. Atmos. Oceanic Tech., 23, 742-749, 

2006. 

 15 

Mori, M., Watanabe, M., Shiogama, H., Inoue, J., and Kimoto, M.: Robust Arctic sea-ice influence on the frequent Eurasian 

cold winters in past decades, Nat. Geosci., 7, 869-873, doi:10.1038/NGEO2277, 2014. 

 

Msadek, R., Vecchi, G. A., Winton, M., and Gudgel, R. G.: Importance of initial conditions in seasonal predictions of Arctic 

sea ice extent, Geophys. Res. Lett., 41, 5208-5215, doi:10.1002/2014GL060799, 2014. 20 

 

Nakanowatari, T., Sato, K., and Inoue, J.: Predictability of the Barents sea ice in early winter: Remote effects of oceanic and 

atmospheric thermal conditions from the North Atlantic, J. Clim., 27, 8884-8901, doi:10.1175/JCLI-D-14-00125.1, 2014. 

 

Peterson, K. A., Arribas, A., Hewitt, H. T., Keen, A. B., Lea, D. J., and McLaren, A. J.: Assessing the forecast skill of Arctic 25 

sea ice extent in the GloSea4 seasonal prediction system, Clim Dyn., 44, 147-162, doi:10.1007/s00382-014-2190-9, 2015. 

 

Pithan, F., and Mauritsen, T.: Arctic amplification dominated by temperature feedbacks in contemporary climate models, 

Nat. Geosci., 7, 181-184, doi:10.1038/NGEO2071, 2014. 

 30 

Polyakov, I. V., Walsh, J. E., and Kwok, R.: Recent changes of arctic multiyear sea ice coverage and the likely causes, Bull. 

Amer. Meteor. Soc., 93, 145-151, doi:10.1175/BAMS-D-11-00070.1, 2012. 

 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

10 
 

Sigmond, M., Fyfe, J. C., Flato, G. M., Kharin, V. V., and Merryfield, W. J.: Seasonal forecast skill of Arctic sea ice area in 

a dynamical forecast system, Geophys. Res. Lett., 40, 529-534, doi:10.1002/grl.50129, 2013. 

 

Sigmond, M., Reader, M. C., Flato, G. M., Merryfield, W. J., and Tivy, A.: Skillful seasonal forecast of Arctic sea ice retreat 

and advance dates in a dynamical forecast system, Geophys. Res. Lett., 43, 12457-12465, doi:10.1002/2016GL071396, 2016. 5 

 

Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, 

O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The role of the Barents Sea in the Arctic 

climate system, Rev. Geophys., 51, 415-449, doi:10.1002/rog.20017, 2013. 

 10 

Stark, J. D., Ridley, J., Martin, M., and Hines, A.: Sea ice concentration and motion assimilation in a sea ice-ocean model, J. 

Geophys. Res., 113, C05S91, doi:10.1029/2007JC004224, 2008. 

 

Stephenson, S. R., Brigham, L. W., and Smith, L. C.: Marine accessibility along Russia’s Northern Sea Route, Polar Geogr., 

37(2), 111-133, http://dx.doi.org/10.1080/1088937X.2013.845859, 2014. 15 

 

Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. 

M.: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324, 2013. 20 

 

Stroeve, J. C., Crawford, A. D., and Stammerjohn, S.: Using timing of ice retreat to predict timing of fall freeze-up in the 

Arctic, Geophys. Res. Lett., 43, 6332-6340, doi:10.1002/2016GL069314, 2016. 

 

Tatebe, H., Ishii, M., Mochizuki, T., Chikamoto, Y., Sakamoto, T. T., Komuro, Y., Mori, M., Yasunaka, S., Watanabe, M., 25 

Ogochi, K., Suzuki, T., Nishimura, T., and Kimoto, M.: The initialization of the MIROC climate models with hydographic 

data assimilation for decadal prediction, J. Meteorol. Soc. Jpn., 90A, 275-294, doi:10.2151/jmsj.2012-A14, 2012. 

 

Tietsche, S., Day, J. J., Guemas, V., Hurlin, W. J., Keeley, S. P. E., Matei, D., Msadek, R., Collins, M., and Hawkins, E.: 

Seasonal to interannual Arctic sea ice predictability in current global climate models, Geophys. Res. Lett., 41, 1035-1043, 30 

doi:10.1002/2013GL058755, 2014. 

 

Wang, L., Yuan, X., Ting, M., and Li, C.: Predicting summer Arctic sea ice concentration intraseasonal variability using a 

vector autoregressive model, J. Clim., 29(4), 1529-1543, doi:10.1175/JCLI-D-15-0313.1, 2016. 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

11 
 

 

Wang, W., Chen, M., and Kumar, A.: Seasonal prediction of Arctic sea ice extent from a coupled dynamical forecast system, 

Mon. Weather Rev., 141, 1375-1394, doi:10.1175/MWR-D-12-00057.1, 2013. 

 

Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S., Emori, S., Takemura, T., Chikira, M., Ogura, T., Sekiguchi, 5 

M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.: Improved climate 

simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Clim., 23, 6312–6335, 

doi:10.1175/2010JCLI3679.1, 2010. 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

 

 

 

 25 

 

 

 

 

 30 

 

 

 

 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

12 
 

 

Figure captions 

Figure 1: Lagged auto-correlation coefficients of the detrended SIEAO anomaly derived from (a) observations (Ishii et al. 

(2006) and Ishii and Kimoto (2009)) and (b) a model control simulation, for each start month, against lead time, following 

Day et al. (2014b). Solid and dashed lines denote values for the September and March target months, respectively. Black 5 

dots indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 

degrees of freedom in observation and model, respectively. 

 

Figure 2: Lead-time dependence of (a) SIEAO ACC and (b) SIEAO RMSE (×106 km2) for hindcasts started in January, April, 

July, and October. SIEAO ACC (RMSE) scores of hindcasts that are higher (lower) than those of the persistence forecast and 10 

statistically significant at the 95 % confidence level based on a two-sided Student's t-test are denoted by black dots. Time 

series of the detrended SIEAO anomaly for (c) September and (d) December, from the observation (black line), assimilation 

(red line), and hindcasts started from July 1st and January 1st (blue line). Blue shading indicates the ensemble spread. In (c), 

September SIEAO started from April 1st is superimposed by aqua line and shading. 

 15 

Figure 3: Lagged correlation coefficients between the detrended SIEAO anomaly and (a–c) the detrended SIVAO anomaly and 

(d–f) the detrended OHCAO anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), 

the hindcasts started from January 1st (HIND.JAN), and the hindcasts started from July 1st (HIND.JUL), respectively. Black 

dots indicate statistical significance at the 95 % confidence level based on a two-sided Student's t-test with 30 and 200 

degrees of freedom in the observation and model. Note that the horizontal and vertical axes in the hindcasts started from July 20 

1st are different from those in the control run and the hindcasts started from January 1st. 

 

Figure 4: Lagged correlation (colors) and regression (contours) coefficients between the SIEAO anomaly (×106 km2) in 

December and (a) SIC anomaly (%) at a lag of 0 months, (b) SIT anomaly (cm) at a lag of 0 months, and OHC anomalies 

(×1018 J) at lags of (c) −9, (d) −6, (e) −3, and (f) 0 months, in regions from 60° to 90° N on the basis of the hindcasts started 25 

from January 1st. Contours are drawn at intervals of 5 (%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c–f), 

the contours are drawn from −1.0 to −0.1 (×1018 J) at intervals of 0.1 (×1018 J). Stippling indicates regions with statistically 

significant correlation coefficients at the 95 % confidence level. White shading indicates areas where the bottom of the MLD 

is below a depth of 200 m or sea ice does not exist. A latitude circle of 65° N is also indicated by a thin solid line. 
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Figure 1. Lagged auto-correlation coefficients of the detrended SIEAO anomaly derived from (a) observations (Ishii et al. (2006) 
and Ishii and Kimoto (2009)) and (b) a model control simulation, for each start month, against lead time, following Day et al. 
(2014b). Solid and dashed lines denote values for September and March target months, respectively. Black dots indicate statistical 5 
significance at the 95% confidence level based on a two-sided Student's t-test with 30 and 200 degrees of freedom in observation 
and model, respectively. 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-122
Manuscript under review for journal The Cryosphere
Discussion started: 14 July 2017
c© Author(s) 2017. CC BY 4.0 License.



 

14 
 

 
Figure 2. Lead-time dependence of (a) SIEAO ACC and (b) SIEAO RMSE (×106 km2) for January, April, July, and October start 

hindcasts. SIEAO ACC (RMSE) scores of hindcasts, which are higher (lower) than those of persistence forecast and statistical 

significance at the 95% confidence level based on a two-sided Student's t-test, are denoted by black dots. Time series of the 

detrended SIEAO anomaly for (c) September and (d) December, from the observation (black line), assimilation (red line), and 5 
hindcasts started from July 1st and January 1st (blue line). Blue shading indicates the ensemble spread. In (c), September SIEAO 

started from April 1st is superimposed by aqua line and shading. 
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Figure 3. Lagged correlation coefficients between the detrended SIEAO anomaly and (a–c) the detrended SIVAO anomaly and (d–f) 

the detrended OHCAO anomaly. Left, middle, and right panels indicate values obtained from the control run (CTRL), the 

hindcasts started from January 1st (HIND.JAN), and the hindcasts started from July 1st (HIND.JUL), respectively. Black dots 

indicate statistical significance at the 95% confidence level based on a two-sided Student's t-test with 30 and 200 degrees of 5 
freedom in observation and model. Note that horizontal and vertical axes in the hindcasts started from July 1st are different from 

those in the control run and the hindcasts started from January 1st. 
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Figure 4. Lagged correlation (colors) and regression (contours) coefficients between SIEAO anomaly (×106 km2) in December and 

(a) SIC anomaly (%) at lag 0 month, (b) SIT anomaly (cm) at lag 0 month, and OHC anomalies (×1018 J) at lag (c) −9, (d) −6, (e) 

−3, and (f) 0 months, in regions from 60° to 90°N on the basis of the hindcasts started from January 1st. Contour intervals are 5 5 
(%) from 5 to 25 for SIC and 10 (cm) from 10 to 40 for SIT. In (c–f), contours are drawn from −1.0 to −0.1 (×1018 J) with interval 

of 0.1 (×1018 J). Stipples indicate regions with statistically significant correlation coefficient at the 95% confidence level. White 

shading indicates areas where the bottom of the MLD is below a depth of 200 m or sea ice does not exist. Latitude circle of 65oN is 

also indicated by thin solid line. 
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