Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atlantic Equatorial Undercurrent intensification counteracts warming-induced deoxygenation

Abstract

The tropical Atlantic upper-ocean circulation experiences multiannual to decadal changes associated with different climate modes and is simultaneously adjusting to climate warming. The most energetic current in the tropical Atlantic is the Equatorial Undercurrent (EUC), which flows eastwards along the Equator. On the basis of long-term moored observations, we show that the EUC strengthened by more than 20% from 2008 to 2018. The intensification of the EUC is associated with increasing subsurface oxygen concentrations and a thickening of the upper-ocean oxygenated layer in the equatorial Atlantic. These changes counteract climate-warming-induced deoxygenation in the region. The EUC strengthening is found to be mainly forced by trade wind changes in the western tropical North Atlantic. A 60-yr dataset reveals that the recent oxygen increase in the upper equatorial Atlantic is associated with multidecadal variability. This variability is characterized by low oxygen concentrations in the 1990s and early 2000s, and high oxygen concentrations in the 1960s and 1970s. The observed oxygen variability seems to be linked to a compression and expansion of the habitat of tropical pelagic fish, and must be accounted for when evaluating the possible consequences of deoxygenation for marine ecosystems and fisheries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Atlantic EUC at 23° W.
Fig. 2: Shipboard measurements along the Atlantic Equator in September–October 2019.
Fig. 3: Surface OLT in the tropical Atlantic.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are publicly available as referenced within the paper and in Supplementary Tables 1, 4 and 5.

Code availability

All necessary code for the data analysis and preparation of the figures of this manuscript is freely available at https://doi.org/10.5281/zenodo.4478285.

References

  1. Yang, H. et al. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans 121, 4928–4945 (2016).

    Article  Google Scholar 

  2. Todd, R. E. et al. Global perspectives on observing ocean boundary current systems. Front Mar. Sci. 6, 423 (2019).

    Article  Google Scholar 

  3. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  4. Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation: observed transport and variability. Front Mar. Sci. 6, 260 (2019).

    Article  Google Scholar 

  5. Hu, S. J. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).

    Article  Google Scholar 

  6. Hazeleger, W. & Drijfhout, S. Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J. Geophys. Res. Oceans 111, C03013 (2006).

  7. Zhang, D. X., McPhaden, M. J. & Johns, W. E. Observational evidence for flow between the subtropical and tropical Atlantic: the Atlantic subtropical cells. J. Phys. Oceanogr. 33, 1783–1797 (2003).

    Article  Google Scholar 

  8. Schott, F. A., McCreary, J. P. & Johnson, G. C. in Earth Climate: The Ocean-Atmosphere Interaction Geophysical Monograph 147 (eds Wang, C. et al.) 261–304 (American Geophysical Union, 2004).

  9. Fratantoni, D. M., Johns, W. E., Townsend, T. L. & Hurlburt, H. E. Low-latitude circulation and mass transport pathways in a model of the tropical Atlantic Ocean. J. Phys. Oceanogr. 30, 1944–1966 (2000).

    Article  Google Scholar 

  10. Rabe, B., Schott, F. A. & Kohl, A. Mean circulation and variability of the tropical Atlantic during 1952-2001 in the GECCO assimilation fields. J. Phys. Oceanogr. 38, 177–192 (2008).

    Article  Google Scholar 

  11. Luo, Y. Y., Rothstein, L. M. & Zhang, R. H. Response of Pacific subtropical-tropical thermocline water pathways and transports to global warming. Geophys. Res. Lett. 36, L04601 (2009).

  12. Duteil, O., Böning, C. W. & Oschlies, A. Variability in subtropical-tropical cells drives oxygen levels in the tropical Pacific Ocean. Geophys. Res. Lett. 41, 8926–8934 (2014).

    Article  Google Scholar 

  13. Schott, F. A. et al. The shallow and deep western boundary circulation of the South Atlantic at 5°−11°S. J. Phys. Oceanogr. 35, 2031–2053 (2005).

    Article  Google Scholar 

  14. Hummels, R. et al. Interannual to decadal changes in the western boundary circulation in the Atlantic at 11°S. Geophys. Res. Lett. 42, 7615–7622 (2015).

    Article  Google Scholar 

  15. Johns, W. E. et al. Zonal structure and seasonal variability of the Atlantic Equatorial Undercurrent. Clim. Dynam. 43, 3047–3069 (2014).

    Article  Google Scholar 

  16. Brandt, P., Funk, A., Tantet, A., Johns, W. & Fischer, J. The Equatorial Undercurrent in the central Atlantic and its relation to tropical Atlantic variability. Clim. Dynam. 43, 2985–2997 (2014).

    Article  Google Scholar 

  17. Stramma, L., Johnson, G. C., Sprintall, J. & Mohrholz, V. Expanding oxygen-minimum zones in the tropical oceans. Science 320, 655–658 (2008).

    Article  Google Scholar 

  18. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article  Google Scholar 

  19. Brandt, P. et al. On the role of circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic. Biogeosciences 12, 489–512 (2015).

    Article  Google Scholar 

  20. Montes, E. et al. Decadal variability in the oxygen inventory of North Atlantic subtropical underwater captured by sustained, long-term oceanographic time series observations. Glob. Biogeochem. Cycles 30, 460–478 (2016).

    Article  Google Scholar 

  21. Ito, T. & Deutsch, C. Variability of the oxygen minimum zone in the tropical North Pacific during the late twentieth century. Glob. Biogeochem. Cycles 27, 1119–1128 (2013).

    Article  Google Scholar 

  22. Duteil, O., Schwarzkopf, F. U., Böning, C. W. & Oschlies, A. Major role of the equatorial current system in setting oxygen levels in the eastern tropical Atlantic Ocean: a high-resolution model study. Geophys. Res. Lett. 41, 2033–2040 (2014).

    Article  Google Scholar 

  23. Hahn, J., Brandt, P., Schmidtko, S. & Krahmann, G. Decadal oxygen change in the eastern tropical North Atlantic. Ocean Sci. 13, 551–576 (2017).

    Article  Google Scholar 

  24. Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    Article  Google Scholar 

  25. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article  Google Scholar 

  26. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

  27. Leung, S., Thompson, L., McPhaden, M. J. & Mislan, K. A. S. ENSO drives near-surface oxygen and vertical habitat variability in the tropical Pacific. Environ. Res. Lett. 14, 064020 (2019).

  28. Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).

    Article  Google Scholar 

  29. Schott, F. A. et al. The zonal currents and transports at 35°W in the tropical Atlantic. Geophys. Res. Lett. 30, 1349 (2003).

  30. Kolodziejczyk, N., Bourlès, B., Marin, F., Grelet, J. & Chuchla, R. Seasonal variability of the Equatorial Undercurrent at 10°W as inferred from recent in situ observations. J. Geophys. Res. Oceans 114, C06014 (2009).

  31. Bourlès, B. et al. PIRATA: a sustained observing system for tropical Atlantic climate research and forecasting. Earth Space Sci. 6, 577–616 (2019).

    Article  Google Scholar 

  32. Foltz, G. R. et al. The tropical Atlantic observing system. Front. Mar. Sci. 6, 206 (2019).

  33. Wacongne, S. Dynamical regimes of a fully nonlinear stratified model of the Atlantic Equatorial Undercurrent. J. Geophys. Res. Oceans 94, 4801–4815 (1989).

    Article  Google Scholar 

  34. Chang, P. et al. Climate fluctuations of tropical coupled systems - the role of ocean dynamics. J. Clim. 19, 5122–5174 (2006).

    Article  Google Scholar 

  35. Hormann, V. & Brandt, P. Atlantic Equatorial Undercurrent and associated cold tongue variability. J. Geophys. Res. Oceans 112, C06017 (2007).

  36. Tuchen, F. P., Lübbecke, J. F., Schmidtko, S., Hummels, R. & Böning, C. W. The Atlantic subtropical cells inferred from observations. J. Geophys. Res. Oceans 124, 7591–7605 (2019).

    Article  Google Scholar 

  37. Schott, F. A., Fischer, J. & Stramma, L. Transports and pathways of the upper-layer circulation in the western tropical Atlantic. J. Phys. Oceanogr. 28, 1904–1928 (1998).

    Article  Google Scholar 

  38. Levin, L. A. Manifestation, drivers, and emergence of open ocean deoxygenation. Annu. Rev. Mar. Sci. 10, 229–260 (2018).

    Article  Google Scholar 

  39. Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article  Google Scholar 

  40. Deutsch, C. et al. Centennial changes in North Pacific anoxia linked to tropical trade winds. Science 345, 665–668 (2014).

    Article  Google Scholar 

  41. Stramma, L., Oschlies, A. & Schmidtko, S. Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr. Biogeosciences 9, 4045–4057 (2012).

    Article  Google Scholar 

  42. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  43. Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 29, 1674–1688 (2015).

    Article  Google Scholar 

  44. Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).

    Article  Google Scholar 

  45. Knight, J. R., Folland, C. K. & Scaife, A. A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33, L17706 (2006).

  46. Frajka-Williams, E., Beaulieu, C. & Duchez, A. Emerging negative Atlantic Multidecadal Oscillation index in spite of warm subtropics. Sci. Rep. 7, 11224 (2017).

  47. Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676 (2000).

    Article  Google Scholar 

  48. Yuan, T. L. et al. Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 43, 1349–1356 (2016).

    Article  Google Scholar 

  49. Ramon, J., Lledó, L., Torralba, V., Soret, A. & Doblas-Reyes, F. J. What global reanalysis best represents near-surface winds? Q. J. R. Meteorol. Soc. 145, 3236–3251 (2019).

    Article  Google Scholar 

  50. CCMP: Cross-Calibrated Multi-Platform Wind Vector Analysis (NCAR, 2017); https://climatedataguide.ucar.edu/climate-data/ccmp-cross-calibrated-multi-platform-wind-vector-analysis

  51. Hollowed, A. B. et al. Projected impacts of climate change on marine fish and fisheries. ICES J. Mar. Sci. 70, 1023–1037 (2013).

    Article  Google Scholar 

  52. Risien, C. M. & Chelton, D. B. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr. 38, 2379–2413 (2008).

    Article  Google Scholar 

  53. Large, W. G., McWilliams, J. C. & Doney, S. C. Oceanic vertical mixing - a review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys. 32, 363–403 (1994).

    Article  Google Scholar 

  54. von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge Univ. Press, 2001).

  55. Rousseeuw, P. J. & Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88, 1273–1283 (1993).

    Article  Google Scholar 

  56. Olsen, A. et al. GLODAPv2.2019 – an update of GLODAPv2. Earth Syst. Sci. Data 11, 1437–1461 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by EU H2020 under grant agreement 817578 TRIATLAS project, by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich 754 “Climate–Biogeochemistry Interactions in the Tropical Ocean” and through several research cruises with RV Meteor and RV Maria S. Merian and by the Deutsche Bundesministerium für Bildung und Forschung (BMBF) as part of the projects NORDATLANTIK (03F0443B) and RACE-Synthese (03F0824C). R. Kopte was supported by the Underway Research Data project of the German Marine Research Alliance. R. Kiko was also supported by a Make Our Planet Great Again grant of the French Agence Nationale de la Recherche under the “Programme d’Investissements d’Avenir” reference ANR-19-MPGA-0012. We thank the captains, crews, scientists and technical groups involved in the different national and international research cruises to the tropical Atlantic that contributed to collecting shipboard and mooring data and making them freely available. Some of the velocity and oxygen observations were acquired within the PIRATA project and the CLIVAR TACE programme.

Author information

Authors and Affiliations

Authors

Contributions

P.B. designed the long-term measurement programme, supervised the data analysis and wrote the first version of the manuscript. J.H. analysed shipboard sections along 23° W. S.S. analysed historical and recent oxygen data. F.P.T. analysed moored velocity data. R. Kopte, F.P.T. and J.H. calculated and analysed EUC transport time series. J.H. and F.P.T. analysed different wind products. R. Kiko, B.B., R.C. and M.D. contributed additional data and expertise on equatorial ocean dynamics and oxygen changes. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Peter Brandt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Dongxiao Zhang, Nicolas Gruber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tom Richardson.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Tables 1–5 and discussion on oxygen changes along the 23° W meridian between 5° S and 14° N

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, P., Hahn, J., Schmidtko, S. et al. Atlantic Equatorial Undercurrent intensification counteracts warming-induced deoxygenation. Nat. Geosci. 14, 278–282 (2021). https://doi.org/10.1038/s41561-021-00716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00716-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene