Skip to main content
Log in

Parton distributions in radiative corrections to the cross section of electron-proton scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The structure function approach and the parton picture, developed for the theoretical description of the deep inelastic electron-proton scattering, also proved to be very effective for calculation of radiative corrections in Quantum Electrodynamics. We use them to calculate radiative corrections to the cross section of electron-proton scattering due to electron-photon interaction, in the experimental setup with the recoil proton detection, proposed by A. A. Vorobyev to measure the proton radius. In the one-loop approximation, explicit expressions for these corrections are obtained for arbitrary momentum transfers. It is shown that, at momentum transfers small compared with the proton mass, various contributions to the corrections mutually cancel each other with power accuracy. In two loops, the corrections are obtained in the leading logarithmic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental datasets were generated or analysed.]

Notes

  1. Higher order corrections to the lepton line was considered for the standard experimental set-up with scattered electron measurement in [19].

  2. Cancellation of leptonic radiative corrections to deep inelastic scattering was discussed in [25] and [26].

  3. Current status of evaluation of parton distributions in QED can be found in [36] for LLA and in [37] for NLLA. Its application to QED part of radiative corrections in deep inelastic scattering can be found in [38].

References

  1. A. Beyer et al., Science 358(6359), 79 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  2. N. Bezginov et al., Science 365(6457), 1007 (2019)

    Article  ADS  Google Scholar 

  3. W. Xiong et al., Nature 575(7781), 147 (2019)

    Article  ADS  Google Scholar 

  4. R. Pohl et al., Nature 466, 213 (2010)

    Article  ADS  Google Scholar 

  5. A. Antognini et al., Science 339, 417 (2013)

    Article  ADS  Google Scholar 

  6. P. J. Mohr, B. N. Taylor and D. B. Newell, Rev. Mod. Phys. 80 (2008) 633. arXiv:0801.0028 [physics.atom-ph]

  7. R. Pohl, R. Gilman, G. A. Miller and K. Pachucki, Ann. Rev. Nucl. Part. Sci. 63 (2013) 175. arXiv:1301.0905 [physics.atom-ph]

  8. J. C. Bernauer, in 34th International Symposium on Physics in Collision (PIC 2014), Sep 16-20 2014, Bloomington, Indiana, USA. arXiv:1411.3743 [nucl-ex]

  9. C.E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015). arXiv:1502.05314 [hep-ph]

    Article  ADS  Google Scholar 

  10. J.P. Karr, D. Marchand, E. Voutier, Nat. Rev. Phys. 2(11), 601–614 (2020)

    Article  Google Scholar 

  11. J. C. Bernauer et al. [A1 Collaboration], Phys. Rev. Lett. 105 (2010) 242001. arXiv:1007.5076 [nucl-ex]

  12. X. Zhan et al., Phys. Lett. B 705, 59 (2011). arXiv:1102.0318 [nucl-ex]

    Article  ADS  Google Scholar 

  13. H. Fleurbaey et al., Phys. Rev. Lett. 120 (2018) no.18, 183001. arXiv:1801.08816 [physics.atom-ph]]

  14. A. Vorobyev, Phys. Part. Nucl. Lett. 16 (2019) no.5, 524. arXiv:1905.03181 [nucl-ex]

  15. Y.-S. Tsai, Phys. Rev. 122, 1898 (1961)

    Article  ADS  Google Scholar 

  16. N. Meister, D.R. Yennie, Phys. Rev. 130, 1210 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  17. L.W. Mo, Y.-S. Tsai, Rev. Mod. Phys. 41, 205 (1969)

    Article  ADS  Google Scholar 

  18. L.C. Maximon, J.A. Tjon, Phys. Rev. C 62, 054320 (2000). arXiv: nucl-th/0002058

    Article  ADS  Google Scholar 

  19. A.B. Arbuzov, T.V. Kopylova, Eur. Phys. J. C 75, 603 (2015). arXiv:1510.06497 [hep-ph]

    Article  ADS  Google Scholar 

  20. C.E. Carlson, M. Vanderhaeghen, Ann. Rev. Nucl. Part. Sci. 57, 171 (2007). arXiv: hep-ph/0701272

    Article  ADS  Google Scholar 

  21. J. Arrington, P. G. Blunden and W. Melnitchouk, Prog. Part. Nucl. Phys. 66 (2011) 782. arXiv:1105.0951 [nucl-th]

  22. A. Afanasev, P.G. Blunden, D. Hasell, B.A. Raue, Prog. Part. Nucl. Phys. 95, 245 (2017). arXiv:1703.03874 [nucl-ex]

    Article  ADS  Google Scholar 

  23. I.A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005). arXiv: nucl-ex/0410010

    Article  ADS  Google Scholar 

  24. V.S. Fadin, R.E. Gerasimov, Phys. Lett. B 795, 172 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  25. A.A. Akhundov, D.Y. Bardin, L. Kalinovskaya, T. Riemann, Fortsch. Phys. 44, 373 (1996). arXiv: hep-ph/9407266

    Article  ADS  Google Scholar 

  26. A. Arbuzov, D.Y. Bardin, J. Blumlein, L. Kalinovskaya, T. Riemann, Comput. Phys. Commun. 94, 128 (1996). arXiv: hep-ph/9511434

    Article  ADS  Google Scholar 

  27. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438; [Yad. Fiz. 15 (1972) 781]

  28. V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 675; [Yad. Fiz. 15 (1972) 1218]

  29. L. N. Lipatov, Sov. J. Nucl. Phys. 20 (1975) 94; [Yad. Fiz. 20 (1974) 181]

  30. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  31. Y. L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641; [Zh. Eksp. Teor. Fiz. 73 (1977) 1216]

  32. E. Kuraev and V. S. Fadin, Sov. J. Nucl. Phys. 41 (1985) 466; [Yad. Fiz. 41 (1985) 733]; DESY L-Trans-297

  33. V. P. Berestetsky, E. M. Lifshits, L. P. Pitaevsky, Quantum electrodynamics (Science. Ch. ed. Phys.-Mat. Lit., Moscow, 1989) 728 p

  34. V.N. Baier, V.M. Katkov, V.S. Fadin, Radiation of relativistic electrons (Atomizdat, Moscow, 1973), p. 374

    Google Scholar 

  35. C.G. Callan Jr., D.J. Gross, Phys. Rev. Lett. 22, 156 (1969)

    Article  ADS  Google Scholar 

  36. J. Blumlein and H. Kawamura, Eur. Phys. J. C 51 (2007), 317. arXiv:hep-ph/0701019 [hep-ph]

  37. V. Bertone, M. Cacciari, S. Frixione, G. Stagnitto, JHEP 03, 135 (2020)

    Article  ADS  Google Scholar 

  38. T. Liu, W. Melnitchouk, J. W. Qiu and N. Sato. arXiv:2008.02895 [hep-ph]

  39. E. De Rafael, J.L. Rosner, Ann. Phys. 82, 369 (1974)

    Article  ADS  Google Scholar 

  40. T. Aoyama, and others, Phys. Rept. 887 (2020) 1. arXiv:2006.04822 [hep-ph]

Download references

Acknowledgements

Work supported in part by the Ministry of Science and Higher Education of Russian Federation and in part by RFBR, Grant 19-02-00690.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Gerasimov.

Additional information

Communicated by Reinhard Alkofer.

Appendices

Appendix A

The vacuum polarisation \(\mathcal{P}(q^2)\) contains lepton (electron, muon, \(\tau \)-lepton ) and hadron contributions:

$$\begin{aligned} \mathcal{P}(q^2) = \mathcal{P}_e(q^2) + \mathcal{P}_\mu (q^2) +\mathcal{P}_\tau (q^2) + \mathcal{P}_h(q^2). \end{aligned}$$
(A.1)

One-loop lepton contribution \(\mathcal {P}^{(1)}_{l}(q^2), \;\;( l=e, \mu , \tau )\) is well known (see, for example, [33]):

$$\begin{aligned}&\mathcal{P}^{(1)}_{l}(q^2) = \frac{\alpha }{\pi }\left( \frac{1}{3}\,\sqrt{1-\frac{4\,m_{l}^2}{q^2}}\,\left( 1+ \frac{2\,m_{l}^2}{q^2}\right) \, \right. \nonumber \\&\left. \times \ \ln \left( \frac{\sqrt{1-\frac{4m_{l}^2}{q^2}}+1}{\sqrt{1-\frac{4m_{l}^2}{q^2}}-1}\right) -\frac{4\,m_{l}^2}{3\,q^2} - \frac{5}{9}\right) . \end{aligned}$$
(A.2)

At \(Q^2 =-q^2 \gg 4m_l^2\)

$$\begin{aligned} \mathcal{P}^{(1)}_{l}(q^2) =\frac{\alpha }{3\pi }\left( \ln \left( \frac{Q^2}{m_l^2}\right) - \frac{5}{3}\right) ~, \end{aligned}$$
(A.3)

and at \(Q^2 =-q^2 \ll 4m_l^2\)

$$\begin{aligned} \mathcal{P}_{l}(q^2) = \frac{\alpha }{15\pi }\frac{Q^2}{m_l^2}~. \end{aligned}$$
(A.4)

The lepton contributions are known also in higher orders of perturbation theory (see, for example, [39, 40]). For us it is enough to know that the two-loop contribution contains only the first degree of \(\ln \left( \frac{Q^2}{m_l^2}\right) \).

The hadron contribution \(\mathcal{P}_h(q^2)\) is expressed in terms of the total cross section of one-photon electron-positron pair annihilation into hadrons

$$\begin{aligned} \mathcal{P}_h(q^2) = \frac{q^2}{4\pi ^2\alpha }\int _{4m^2_{\pi }}^\infty ds\frac{\sigma _{e^+e^ \rightarrow hadrons}(s)}{s-q^2}~. \end{aligned}$$
(A.5)

This contribution is small compared with \(\alpha /\pi \) at \(Q^2 < 4m^2_{\pi }\), becomes of order of \(\alpha /\pi \) only at \(Q^2\sim 4m^2_{\pi }\) and then grows logarithmically with \(Q^2\). Recent review is given in [40].

Appendix B

To find the contribution \(\delta ^e_{hard}\) of the one-photon emission with \(\kappa '>\kappa _0\) to the radiative correction \(\delta ^e\) at \(Q^2\gg m^2\) it is convenient to introduce the intermediate scale \(\kappa _1\) such that \(Q^2\gg \kappa _1\gg m^2\). In the region \(\kappa _1>\kappa '>\kappa _0\) one can put

$$\begin{aligned} W_g&=-\frac{\alpha }{2\pi }\Bigg [ \frac{Q^2}{\kappa '} \left( \ln \left( \frac{Q^4}{m^2(m^2+2\kappa ')}\right) -2 \right) \nonumber \\&\qquad +\frac{Q^2\kappa '}{(m^2+2\kappa ')^2}\Bigg ]~, \end{aligned}$$
(B.1)
$$\begin{aligned} W_l&=0~, \end{aligned}$$
(B.2)

so that

$$\begin{aligned}&F_1= -\frac{1}{2} W_g~,&\quad&F_2=2F_1~. \end{aligned}$$
(B.3)

Therefore in this region we have from Eqs. (22)–(24)

$$\begin{aligned} \frac{d\sigma ^{\gamma }}{dQ^2 dx } = - W_g\frac{d\sigma _{B}}{dQ^2}~. \end{aligned}$$
(B.4)

Using that in this region it is possible to put \(\kappa ' = Q^2(1-x)/2\), it is easy to obtain the part \(\delta ^{(1)}_{hard}\) of the correction \(\delta ^e_{hard}\), defined by Eqs. (21) and (95), from this region:

$$\begin{aligned} \delta ^{(1)}_{hard}&= \frac{\alpha }{\pi }\int _{\kappa _0}^{\kappa _1}\frac{d\kappa '}{\kappa '} \Bigg [2 \Big (\ln \left( \frac{Q^2}{m^2}\right) -1 \Big )\nonumber \\&\quad - \ln \left( \frac{m^2+2\kappa '}{m^2}\right) + \frac{\kappa '^2}{(m^2+2\kappa ')^2} \Bigg ]\nonumber \\&= \frac{\alpha }{\pi }\Bigg [2 \ln \left( \frac{\kappa _1}{\kappa _0}\right) \Big (\ln \left( \frac{Q^2}{m^2}\right) -1 \Big ) \nonumber \\&\qquad -\frac{1}{2}\ln ^2\left( \frac{2\kappa _1}{m^2}\right) + \frac{1}{4}\Big (\ln \left( \frac{2\kappa _1}{m^2}\right) -1\Big )\nonumber \\&\qquad -\frac{\pi ^2}{6}\Bigg ]~, \end{aligned}$$
(B.5)

Using (67), we obtain

$$\begin{aligned}&\delta ^{e}_{vert}+ \delta _{soft}+\delta ^{(1)}_{hard}\nonumber \\&=\frac{\alpha }{\pi }\Bigg [2 \ln \left( \frac{2\kappa _1}{m^2}\right) \Big (\ln \left( \frac{Q^2}{m^2}\right) -1 \Big ) \nonumber \\&\quad -\frac{3}{2}\ln ^2\left( \frac{Q^2}{m^2}\right) + \frac{5}{2}\ln \left( \frac{Q^2}{m^2}\right) -\frac{1}{2}\ln ^2\left( \frac{2\kappa _1}{m^2}\right) \nonumber \\&\quad + \frac{1}{4} \ln \left( \frac{2\kappa _1}{m^2}\right) -\frac{\pi ^2}{6} -\frac{5}{4}\Bigg ]~. \end{aligned}$$
(B.6)

In the region \(\kappa _{max}>\kappa '>\kappa _1\), i.e. \(1-\frac{2\kappa _1}{Q^2}>x>x_{-}\) at \(Q^2\gg m^2\) one can put

$$\begin{aligned} W_g&= -\frac{\alpha }{2\pi }\left[ \frac{1+x^2}{1-x}\ln \left( \frac{Q^2}{m^2x(1-x)}\right) \right. \nonumber \\&\qquad \left. +\frac{1-8x}{2(1-x)} \right] ~, \end{aligned}$$
(B.7)

and

$$\begin{aligned} W_l=\frac{\alpha }{2\pi }\frac{Q^2}{4x}~, \end{aligned}$$
(B.8)

so that

$$\begin{aligned} F_1 = \frac{1}{2}\left( \frac{4x^2\;W_l}{Q^2}-W_g\right) ~, \end{aligned}$$
(B.9)
$$\begin{aligned} F_2 =x\left( \frac{12x^2}{Q^2}\;W_l-W_g\right) = 2x F_1 +\frac{\alpha }{\pi }x^2~. \end{aligned}$$
(B.10)

As it is seen, the Callan-Gross relation [35] is violated in this region. It could be expected, since this relation is valid only in the collinear approximation.

Using Eqs. (22)–(24), we have for the part \(\delta ^{(2)}_{hard}\) of the correction \(\delta ^e_{hard}\) from this region:

$$\begin{aligned} \delta ^{(2)}_{hard}&= \int _{x_-}^{1-2\frac{\kappa _1}{Q^2}}dx \bigg [\frac{F_2(x, Q^2)}{x} \nonumber \\&-\frac{Q^2}{2(pl)}\frac{Q^2G_M^2 +4M^2G_E^2}{(4M^2+Q^2)R(1, Q^2)}\frac{F_2(x, Q^2)(1-x)}{x^2}\nonumber \\&+\frac{Q^2}{8(pl)^2}\frac{Q^2(Q^2+2M^2)G_M^2 -8M^4G_E^2}{(4M^2+Q^2)R(1, Q^2)}\nonumber \\&\quad \times \frac{F_2(x, Q^2)(1-x^2)}{x^3}\nonumber \\&-\frac{Q^2}{8(pl)^2}\frac{(Q^2G_M^2 -2M^2G_E^2)}{R(1, Q^2)}\nonumber \\&\quad \times \frac{F_2(x, Q^2)-2xF_1(x, Q^2)}{x^3}\bigg ] ~. \end{aligned}$$
(B.11)

Note that in the integral (B.11) the upper limit can be set equal to 1 in all terms except the first one. It gives

$$\begin{aligned} \delta ^{(2)}_{hard}&= \frac{\alpha }{2\pi }\Biggl [ \left( 3\ln \left( \frac{Q^2}{m^2}\right) -4\ln \left( \frac{2\kappa _1}{m^2}\right) \right. \nonumber \\&\ \left. -5 + x_- +\frac{x_-^2}{2}+2\ln (1-x_-) \right) \ln \left( \frac{Q^2}{m^2}\right) \nonumber \\&+\ln ^2\left( \frac{2\kappa _1}{m^2}\right) +\frac{7}{2}\ln \left( \frac{2\kappa _1}{m^2(1-x_-)}\right) \nonumber \\&-\ln ^2(1-x_-) + \frac{(1-x_-)}{2}(3+x_-)\ln (1-x_-) \nonumber \\&+ 2\text {Li}_2(1-x_-) -\frac{x_-}{2}(2+x_-)\ln x_- +\frac{5}{2} \nonumber \\&-\frac{x_-}{2}(3+2x_-)\nonumber \\&+\frac{Q^2}{4(pl)}\frac{Q^2G_M^2 +4M^2G_E^2}{(4M^2+Q^2)R(1, Q^2)}\,\phi _1(x_-) \nonumber \\&+\frac{Q^2}{16(pl)^2}\frac{Q^2(Q^2+2M^2)G_M^2 -8M^4G_E^2}{(4M^2+Q^2)R(1,Q^2)}\phi _2(x_-) \nonumber \\&+\frac{Q^2}{4(pl)^2}\frac{Q^2G_M^2 -2M^2G_E^2}{R(1, Q^2)}\,\phi _3(x_-) \Bigg ]~, \end{aligned}$$
(B.12)

with \(\phi _{i}\) defined in Eqs. (69)–(72).

The intermediate parameter \(\kappa _1\) disappears in the sum \(\delta _{hard}^e = \delta ^{(2)}_{hard}+ \delta ^{(1)}_{hard}\):

$$\begin{aligned} \delta ^{e}_{hard}&= \frac{\alpha }{2\pi }\Bigg [ \ln \left( \frac{Q^2}{m^2}\right) \left( 3\ln \left( \frac{Q^2}{m^2}\right) \right. \nonumber \\&\qquad \left. -4\ln \left( \frac{2\kappa _0}{m^2}\right) -5\right) \nonumber \\&+4\ln \left( \frac{2\kappa _0}{m^2}\right) + 2 + \phi _0(x_-)\nonumber \\&+\frac{Q^2}{4(pl)}\frac{{Q^2}G_M^2 +4M^2G_E^2}{(4M^2+Q^2)R(1, Q^2)}\phi _1(x_-) \nonumber \\&+\frac{Q^2}{16(pl)^2}\frac{Q^2(Q^2+2M^2)G_M^2 -8M^4G_E^2}{(4M^2+Q^2)R(1, Q^2)} \phi _2(x_-) \nonumber \\&+\frac{Q^2}{4(pl)^2}\frac{Q^2G_M^2 -2M^2G_E^2}{R(1, Q^2)}\phi _3(x_-)\Bigg ]~. \end{aligned}$$
(B.13)

Appendix C

Straightforward integration gives

$$\begin{aligned}&\int ^{x_-}_0 dx\, V_2(x) = 4\text {Li}_2(x_-) \nonumber \\&\quad -4\ln (1-x_-)\ln \frac{(1-x_-)}{x_-} \nonumber \\&\quad -(\frac{4}{3}+4x_- +2x^2_-)\ln (1-x_-)\nonumber \\&\quad +3x_-(1+\frac{x_-}{2})\ln x_- -\frac{8}{3} x_- - \frac{7}{12} x^2_-~, \end{aligned}$$
(C.1)
$$\begin{aligned}&\int _{x_-}^1 dx\left( \frac{1}{x}-1\right) V_2(x) = 4\text {Li}_2(x_-)-\frac{2}{3} \pi ^2 \nonumber \\&\quad + \frac{1}{2}\ln ^2x_- +2(1-x_-^2)\ln (1-x_-) \nonumber \\&\quad -\left( \frac{5}{3}-\frac{3}{2} x_-^2\right) \ln x_-\nonumber \\&\quad +\frac{1}{12}(1-x_-)(31+7x_-) ~, \end{aligned}$$
(C.2)
$$\begin{aligned}&\int _{x_-}^1 dx\left( \frac{1}{x^2}-1\right) V_2(x) = 4\text {Li}_2(x_-)-\frac{2}{3} \pi ^2 \nonumber \\&\quad +\frac{1}{2}\ln ^2x_-\nonumber \\&\quad +2(1-x_-^2)\left( \frac{2}{x_-} +1\right) \ln (1-x_-) \nonumber \\&\quad - \left( \frac{1}{x_-}+\frac{5}{3} - 3 x_- -\frac{3}{2} x_-^2\right) \ln x_- \nonumber \\&\quad + (1-x_-)(\frac{2}{3x_-}+\frac{13}{4}+\frac{7}{12}x_-)~, \end{aligned}$$
(C.3)
$$\begin{aligned}&\int _{x_-}^1 dx\, S_2(x) = -\left( \frac{4}{3} +2x_- +x^2_-\right) \ln x_- \nonumber \\&\qquad - \frac{1}{9}(1-x_-)(22+13 x_- +4x_-^2)~, \end{aligned}$$
(C.4)
$$\begin{aligned}&\int _{x_-}^1 dx\, \frac{S_2(x)}{x} = - \ln ^2x_- - ({2}{x_-} +1)\ln x_- \nonumber \\&\qquad + \frac{(1-x_-)}{3}\left( \frac{4}{x_-}-11 -2x_-\right) ~, \end{aligned}$$
(C.5)
$$\begin{aligned}&\int _{x_-}^1 dx\, \frac{S_2(x)}{x^2} = - \ln ^2x_- + (\frac{2}{x_-} +1)\ln x_- \nonumber \\&\qquad + \frac{(1-x_-)}{3}\left( \frac{2}{x_-^2}+\frac{11}{x_-}-4\right) ~. \end{aligned}$$
(C.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadin, V.S., Gerasimov, R.E. Parton distributions in radiative corrections to the cross section of electron-proton scattering. Eur. Phys. J. A 57, 86 (2021). https://doi.org/10.1140/epja/s10050-021-00399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00399-7

Navigation