Skip to main content
Log in

Arcuate extension structures in kinematic analysis of regional and global tectonic settings

  • Published:
Geotectonics Aims and scope

Abstract

Disjunctive extension structures with a regular arcuate shape in plan view are widespread in the Earth’s tectonosphere. Author analyzes and explains the features of their geometry. A study of the formation conditions of arcuate extension structures in tectonic settings of various scale and type has shown that the common cause of their curvature is kinematic asymmetry of horizontal extension, when acceleration is attained only from one of two fault limbs, which meets smaller resistance of the medium. The concave side of arc is oriented in the same direction. Data are given on kinematics of lateral motions in settings of continental rifting, gravitational collapse of orogens, and moderate extension of gravitational–tectonic nature within continental platforms. It is suggested that asymmetric extension occurs widely in the formation of arcuate structures in continents and oceans. It is shown that the effect of asymmetric extension can be considered for subduction-related island arcs in the Western Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Belousov, Geotectonics (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  2. V. S. Burtman, “Geodymanics of Tibet, Tarim, and the Tien Shan in the Late Cenozoic,” Geotectonics 46, 185–211 (2012).

    Article  Google Scholar 

  3. M. V. Gzovskii and E. I. Chertkova, “Simulation of wave-like trends of large tectonic ruptures,” Izv. Akad. Nauk SSSR. Ser. Geofiz. No. 6, 482–499 (1953).

    Google Scholar 

  4. M. L. Kopp, Lateral Ejection Structures in the Alpine-Himalayan Collisional Belt (Nauchnyi Mir, Moscow, 1997) [in Russian].

    Google Scholar 

  5. M. L. Kopp, Mobilistic Neotectonics of the Platforms in Southeast Europe, Vol. 552 of Tr. Geol. Inst. Ross. Akad. Nauk (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  6. M. L. Kopp, “Recent deformation of the Southern Urals and the Mugodzhary Mountains and its possible origin,” Geotectonics 39, 364–388 (2005).

    Google Scholar 

  7. M. L. Kopp, “Denudation scarps as indicators of regional tectonic stresses,” Geotectonics 45, 394–410 (2011).

    Article  Google Scholar 

  8. M. L. Kopp, V. E. Verzhbitsky, A. A. Kolesnichenko, T. Yu. Tveritinova, N. Yu. Vasil’ev, V. A. Korchemagin, A. O. Mostryukov, and A. I. Ioffe, “Recent stress field in the east of the Russian Plate and the Urals from macro-and mesostructural evidence,” Geotectonics 48, 273–291 (2014).

    Article  Google Scholar 

  9. M. I. Kuz’min, V. V. Yarmolyuk, and V. A. Kravchinskii, “Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province,” Geotectonics 45, 415–438 (2011).

    Article  Google Scholar 

  10. N. A. Logachev, S. A. Bornyakov, and S. I. Sherman, “Mechanism of the Baikal Rift Zone formation based on results of physical modeling,” Dokl. Earth Sci. 373, 980–982 (2000).

    Google Scholar 

  11. A. V. Luk’yanov, “Experiments in tectonics,” in Experimental Tectonics: Methods, Results, and Perspectives (Nauka, Moscow, 1989), pp. 9–30.

    Google Scholar 

  12. O. V. Lunina, A. S. Gladkov, and N. N. Nevedrova, Rift Basin of the Baikal Region: Tectonic Structure and Evolution (Geo, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  13. International Tectonic Map of Europe, Scale 1: 5000000, in 5 Sheets, Ed. by V. E. Khain and Yu. G. Leonov (Commission on the International Geological Map of the World, Moscow, 1996), 3rd ed.

  14. E. E. Milanovskii, Recent Tectonics of the Caucasus (Nedra, Moscow, 1968) [in Russian].

    Google Scholar 

  15. Uplands of the Cis-Baikal and Trans-Baikal Regions, Ed. by N. A. Florensov (Nauka, Moscow, 1974) [in Russian].

  16. V. I. Makarov, N. V. Makarova, and S. A. Nesmeyanov, et al., Recent Tectonics and Geodynamics: Junction Zone between the East European Craton and Scythian Plate, Ed. by Yu. K. Shchukin (Nauka, Moscow, 2006) [in Russian].

  17. V. A. San’kov, A. V. Parfeevets, A. V. Lukhnev, A. I. Miroshnichenko, and S. V. Ashurkov, “Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area,” Geotectonics 45, 378–393 (2011).

    Article  Google Scholar 

  18. E. V. Sklyarov, A. M. Mazukabzov, and A. I. Mel’nikov, Complexes of Metamorphic Cores of the Cordilleran Type (NITs OIGGM, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  19. N. P. Chamov, Structure and Evolution of the Middle Russian–White Sea Province in the Neoproterozoic, Vol. 609 of Tr. Geol. Inst. Ross. Akad. Nauk (GEOS, Moscow, 2016) [in Russian].

    Google Scholar 

  20. N. S. Shatskii, “Balyklei graben and dislocations in southern Volga region,” Vestn. Mosk. Gorn. Akad. 1 (1), 13–43 (1922).

    Google Scholar 

  21. S. I. Sherman and K. G. Levi, “Transform faults of the Baikal Rift Zone,” Dokl. Akad. Nauk SSSR 233, 461–464 (1978).

    Google Scholar 

  22. B. H. Baker, P. F. Mohr, and L. A. J. Williams, The Geology of the Eastern Rift System of Africa, Vol. 136 of Geol. Soc. Am., Spec. Pap. (Geol. Soc. Am., 1973).

    Google Scholar 

  23. A. W. Bally, D. Bernoully, G. A. Lavis, and L. Montadert, “Listric normal faults,” Oceanol. Acta 4, 87–101 (1981).

    Google Scholar 

  24. H. Cloos, “Uber antitetische Bewegungen,” Geol. Rundsch. 19, 246–251 (1928).

    Article  Google Scholar 

  25. D. Delvaux, R. Moyes, G. Stapel, C. Petit, K. Levi, A. Miroshnichenko, V. Ruzhich, and V. San’kov, “Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part 2: Cenozoic rifting,” Tectonophysics 282, 1–38 (1997).

    Article  Google Scholar 

  26. W. R. Dickinson, “Plate tectonics models of geosynclines,” Earth Planet. Sci. Lett. 10, 165–174 (1971).

    Article  Google Scholar 

  27. D. W. Forsyth and S. Uyeda, “On the relative importance of the driving forces of plate motions,” Geophys. J. R. Astron. Soc. 43, 163–200 (1975).

    Article  Google Scholar 

  28. E. C. Frank, “Curvature of island arc,” Nature 220, 363 (1968).

    Article  Google Scholar 

  29. A. D. Gibbs, “Structural evolution of extensional basin margins,” J. Geol. Soc. (London, U.K.) 141, 609–620 (1984).

    Article  Google Scholar 

  30. A. E. Gripp and R. G. Gordon, “Young tracks of hotspots and current plate velocities,” Geophys. J. Int. 150, 321–361 (2002).

    Article  Google Scholar 

  31. T. W. C. Hilde, “Sediment subduction versus accretion around the Pacific,” Tectonophysics 99, 38177–397 (1983).

    Google Scholar 

  32. B. L. Isacks, J. Oliver, and L. R. Sykes, “Seismology and the new global tectonics,” J. Geophys. Res. 73, 5855–99 (1968).

    Article  Google Scholar 

  33. P. Keary, K. A. Klepeis, and F. J. Vine, Global Tectonics (Wiley-Blackwell, Oxford, 2008).

    Google Scholar 

  34. Ph. Lake, “Island arcs and mountain building,” Geogr. J. 78, 34–39 (1931).

    Article  Google Scholar 

  35. N. A. Logachev, Yu. F. Zorin, and V. A. Rogozhina, “Baykal rift: Active or passive? Comparison of the Baykal and Kenya rift zones,” Tectonophysics 94, 223–240 (1983).

    Article  Google Scholar 

  36. G. Mandle, Rock Joints: The Mechanical Genesis (Springer, Berlin, 2005).

    Google Scholar 

  37. E. McGill and A. W. Stromquist, “Grabens of Canyonlands national park, Utah: Geometry, mechanics, and kinematics,” J. Geophys. Res., B 84, 4547–4563 (1979).

    Article  Google Scholar 

  38. R. D. Müller, W. R. Roest, J. Y. Royer, L. M. Gahagan, and J. G. Sclater, “Digital isochrons of the world’s ocean floor,” J. Geophys. Res.: Solid Earth 102, 3211–3214 (1997).

    Article  Google Scholar 

  39. K. Nakamura and S. Ueda, “Stress gradients in arcs–back-arc regions and plate subduction,” J. Geophys. Res., B 85, 6419–6428 (1980).

    Article  Google Scholar 

  40. B. R. Rosendahl, “Architecture of continental rifts with special reference to east Africa,” Annu. Rev. Earth Planet. Sci. 15, 445–503 (1987).

    Article  Google Scholar 

  41. P. Tapponnier and P. Molnar, “Slip-line field theory and large-scale continental tectonics,” Nature 264, 319–324 (1976).

    Article  Google Scholar 

  42. S. Uyeda and H. Kanamori, “Back-arc opening and the mode of subduction,” J. Geophys. Res., B 84, 1049–1062 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Kopp.

Additional information

Original Russian Text © M.L. Kopp, 2017, published in Geotektonika, 2017, No. 6, pp. 18–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopp, M.L. Arcuate extension structures in kinematic analysis of regional and global tectonic settings. Geotecton. 51, 549–565 (2017). https://doi.org/10.1134/S0016852117060036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852117060036

Keywords

Navigation