Skip to main content
Log in

Kindlin3 regulates biophysical properties and mechanics of membrane to cortex attachment

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Kindlin3 (K3), a FERM domain containing protein expressed in hematopoietic cells controls integrin activation and thus hemostatic and inflammatory responses. However, its role in the mechanics of plasma membrane remains unclear. Here, we show that genetic knockout of K3 in microglia and macrophages resulted in defective plasma membrane tension and membrane blebbing. Atomic force microscopy (AFM) of K3-deficient cells revealed a significant loss in membrane-to-cortex attachment (MCA), and consequently reduced membrane tension. This loss in MCA is amplified by the mislocalization of the cell cortex proteins—ezrin, radixin, and moesin (ERM)—to the plasma membrane of microglia and macrophages. Re-expression of K3 in K3-deficient macrophages rescued the defects and localization of ERMs implying a key role for K3 in MCA. Analysis of two K3 mutants, K3int affecting integrin binding and activation, and K3pxn/act disrupting binding to paxillin and actin but not integrin functions, demonstrated that the role of K3 in membrane mechanics is separate from integrin activation. The K3pxn/act mutant substantially diminished both membrane tension and Yes-associated protein (YAP) translocation to the nucleus, while preserving integrin activation, cell spreading, and migration. Together, our results show that K3 coordinates membrane mechanics, ERM protein recruitment to the membrane, and YAP translocation by linking integrin at the membrane to paxillin and actin of the cytoskeleton. This novel function of K3 is distinct from its role in integrin activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Code availability

Not applicable.

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. Meller J, Chen Z, Dudiki T, Cull RM, Murtazina R et al (2017) Integrin-kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight 2:e93002

    Article  PubMed Central  Google Scholar 

  2. Fereol S, Fodil R, Labat B, Galiacy S, Laurent VM et al (2006) Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Cell Motil Cytoskeleton 63:321–340

    Article  PubMed  Google Scholar 

  3. Fereol S, Fodil R, Laurent VM, Planus E, Louis B et al (2008) Mechanical and structural assessment of cortical and deep cytoskeleton reveals substrate-dependent alveolar macrophage remodeling. Biomed Mater Eng 18:S105-118

    CAS  PubMed  Google Scholar 

  4. Svitkina TM (2018) Ultrastructure of the actin cytoskeleton. Curr Opin Cell Biol 54:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Diz-Munoz A, Weiner OD, Fletcher DA (2018) In pursuit of the mechanics that shape cell surfaces. Nat Phys 14:648–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85–89

    Article  CAS  PubMed  Google Scholar 

  7. Calderwood DA, Campbell ID, Critchley DR (2013) Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 14:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Case LB, Waterman CM (2015) Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 17:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Fremillon A et al (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Humphrey JD, Dufresne ER, Schwartz MA (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15:802–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang G, Giannone G, Critchley DR, Fukumoto E, Sheetz MP (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337

    Article  CAS  PubMed  Google Scholar 

  12. Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C (2017) Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 130:1612–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, Deng Y, Sun K, Yang H, Liu J et al (2017) Structural basis of kindlin-mediated integrin recognition and activation. Proc Natl Acad Sci USA 114:9349–9354

    Article  CAS  PubMed  Google Scholar 

  14. Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O et al (2009) A point mutation in kindlin3 ablates activation of three integrin subfamilies in humans. Nat Med 15:313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bu W, Levitskaya Z, Loh ZY, Jin S, Basu S et al (2020) Structural basis of human full-length kindlin-3 homotrimer in an auto-inhibited state. PLoS Biol 18:e3000755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J, Fukuda K, Xu Z, Ma YQ, Hirbawi J et al (2011) Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin activation. J Biol Chem 286:43334–43342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malinin NL, Plow EF, Byzova TV (2010) Kindlins in FERM adhesion. Blood 115:4011–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bottcher RT, Veelders M, Rombaut P, Faix J, Theodosiou M et al (2017) Kindlin-2 recruits paxillin and Arp2/3 to promote membrane protrusions during initial cell spreading. J Cell Biol 216:3785–3798

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Huang M, Lai J, Mao K, Sun P et al (2017) Kindlin supports platelet integrin alphaIIbbeta3 activation by interacting with paxillin. J Cell Sci 130:3764–3775

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bledzka K, Bialkowska K, Sossey-Alaoui K, Vaynberg J, Pluskota E et al (2016) Kindlin-2 directly binds actin and regulates integrin outside-in signaling. J Cell Biol 213:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dudiki T, Meller J, Mahajan G, Liu H, Zhevlakova I et al (2020) Microglia control vascular architecture via a TGFbeta1 dependent paracrine mechanism linked to tissue mechanics. Nat Commun 11:986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hirao M, Sato N, Kondo T, Yonemura S, Monden M et al (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    Article  CAS  PubMed  Google Scholar 

  23. Tang P, Cao C, Xu M, Zhang L (2007) Cytoskeletal protein radixin activates integrin alpha(M)beta(2) by binding to its cytoplasmic tail. FEBS Lett 581:1103–1108

    Article  CAS  PubMed  Google Scholar 

  24. Ponuwei GA (2016) A glimpse of the ERM proteins. J Biomed Sci 23:35

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shabardina V, Kashima Y, Suzuki Y, Makalowski W (2020) Emergence and evolution of ERM proteins and merlin in metazoans. Genome Biol Evol 12:3710–3724

    Article  CAS  PubMed  Google Scholar 

  26. Charrin S, Alcover A (2006) Role of ERM (ezrin-radixin-moesin) proteins in T lymphocyte polarization, immune synapse formation and in T cell receptor-mediated signaling. Front Biosci 11:1987–1997

    Article  CAS  PubMed  Google Scholar 

  27. Shi Z, Graber ZT, Baumgart T, Stone HA, Cohen AE (2018) Cell membranes resist flow. Cell 175:1769-1779.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow ofmembrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Litvinov RI, Chen X, Bach TL, Lian L et al (2008) Loss of PIP5KIgamma, unlike other PIP5KI isoforms, impairs the integrity of the membrane cytoskeleton in murine megakaryocytes. J Clin Invest 118:812–819

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Raucher D, Stauffer T, Chen W, Shen K, Guo S et al (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  CAS  PubMed  Google Scholar 

  31. Bryant G, Wolfe J (1987) Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J Membr Biol 96:129–139

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Zhu L, Dudiki T, Gabanic B, Good L et al (2020) Macrophage migration and phagocytosis are controlled by kindlin-3’s link to the cytoskeleton. J Immunol 204:1954–1967

    Article  CAS  PubMed  Google Scholar 

  33. Zhu L, Liu H, Lu F, Yang J, Byzova TV et al (2019) Structural basis of paxillin recruitment by kindlin-2 in regulating cell adhesion. Structure 27:1686-1697.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bruckner BR, Pietuch A, Nehls S, Rother J, Janshoff A (2015) Ezrin is a major regulator of membrane tension in epithelial cells. Sci Rep 5:14700

    Article  Google Scholar 

  35. Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    Article  CAS  PubMed  Google Scholar 

  36. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  CAS  Google Scholar 

  37. Sitarska E, Diz-Munoz A (2020) Pay attention to membrane tension: mechanobiology of the cell surface. Curr Opin Cell Biol 66:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malinin NL, Pluskota E, Byzova TV (2012) Integrin signaling in vascular function. Curr Opin Hematol 19:206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun M, Graham JS, Hegedus B, Marga F, Zhang Y et al (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89:4320–4329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kadry YA, Huet-Calderwood C, Simon B, Calderwood DA (2018) Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading. J Cell Sci 131:jcs221184

    Article  PubMed  PubMed Central  Google Scholar 

  41. Theodosiou M, Widmaier M, Bottcher RT, Rognoni E, Veelders M et al (2016) Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. Elife 5:e10130

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA (2020) Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. J Biol Chem 295:11161–11173

    Article  CAS  PubMed  Google Scholar 

  43. Diz-Munoz A, Krieg M, Bergert M, Ibarlucea-Benitez I, Muller DJ et al (2010) Control of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8:e1000544

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pontes B, Monzo P, Gole L, Le Roux AL, Kosmalska AJ et al (2017) Membrane tension controls adhesion positioning at the leading edge of cells. J Cell Biol 216:2959–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Panciera T, Azzolin L, Cordenonsi M, Piccolo S (2017) Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18:758–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rausch V, Hansen CG (2020) The Hippo pathway, YAP/TAZ, and the plasma membrane. Trends Cell Biol 30:32–48

    Article  CAS  PubMed  Google Scholar 

  47. Pontes B, Monzo P, Gauthier NC (2017) Membrane tension: a challenging but universal physical parameter in cell biology. Semin Cell Dev Biol 71:30–41

    Article  CAS  PubMed  Google Scholar 

  48. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pontes B, Ayala Y, Fonseca AC, Romao LF, Amaral RF et al (2013) Membrane elastic properties and cell function. PLoS ONE 8:e67708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  CAS  PubMed  Google Scholar 

  51. Amadio S, De Ninno A, Montilli C, Businaro L, Gerardino A et al (2013) Plasticity of primary microglia on micropatterned geometries and spontaneous long-distance migration in microfluidic channels. BMC Neurosci 14:121

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from NIH; R01 HL071625 to T.V.B. and funds from National Science Foundation (CBET, Award # 1337859) to C.R.K. We acknowledge the use of the Cleveland Clinic Imaging Core equipment and services supported by NIH SIG grant 1S10RR026820-01.

Author information

Authors and Affiliations

Authors

Contributions

TD designed and performed experiments, performed data analysis, and wrote the manuscript. GM, HL, IZ, CB, and DN performed experiments and data analysis. CRK and TVB conceived experiments, analyzed data, wrote the manuscript, and secured funding.

Corresponding authors

Correspondence to Chandrasekhar R. Kothapalli or Tatiana V. Byzova.

Ethics declarations

Ethics approval

Animal experimental procedures were performed in accordance with National Institutes of Health (NIH) guidelines on animal care and all protocols were approved by the Institutional Animal Care and Use Committee at Cleveland Clinic. The lentivirus infection was performed in accordance with the Cleveland Clinic IBC protocol.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudiki, T., Mahajan, G., Liu, H. et al. Kindlin3 regulates biophysical properties and mechanics of membrane to cortex attachment. Cell. Mol. Life Sci. 78, 4003–4018 (2021). https://doi.org/10.1007/s00018-021-03817-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03817-7

Keywords

Navigation