Skip to main content
Log in

High quality and low loss surface acoustic wave SAW resonator based on chromium-doped AlN on sapphire

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper aims to investigate the performances of surface acoustic wave (SAW) resonators based on chromium-doped aluminum nitride (AlCrN) piezoelectric thin film on c-cut sapphire substrate. The electromechanical properties of AlCrN (mass density, elastic, dielectric and piezoelectric constants) are obtained from density functional theory calculations for different Cr-doping concentrations. Piezoelectricity is enhanced for Al1 − xCrxN with different x concentrations. Using finite element analysis, the electroacoustic parameters such as phase velocity, electromechanical coupling factor K2 of surface acoustic modes are determined for different AlCrN thickness-to-wavelength ratios and different Cr-doping concentrations. Higher order SAW modes arise at Cr concentration x = 25%. The electrical admittance and scattering parameter S21 for the fundamental SAW modes are determined. High K2, low loss and high-quality factor are found after incorporating Cr dopant. The comparison of the obtained results with the available numerical and experimental data on AlN doped with Scandium Sc has shown a considerable improvement of SAW devices characteristics, confirming that AlCrN can be adopted as a new piezoelectric material for high performances SAW devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Kimura, M. Omura, Y. Kishimoto, K. Y. Hashimoto, IEEE/MTT-S International Microwave Symposium-IMS, 846 (2018)

  2. J.O. Guerra-Pulido, P.R. Pérez-Alcázar, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(3), 499 (2018)

    Article  Google Scholar 

  3. D. Li, X. Zu, D. Ao, Q. Tang, Y. Fu, Y. Guo, Y. Tang, Sens. Actuators B. 294, 55 (2019)

    Article  Google Scholar 

  4. C. Zhang, A. Ghosh, H. Zhang, S.Q. Shi, Smart Mater. Struct. 29(1), 015039 (2019)

    Article  ADS  Google Scholar 

  5. K. Tsubouchi, K. Sugai, N. Mikoshiba, Proc. IEEE Ultrasonics Symp. 375 (1981)

  6. T. Aubert, O. Elmazria, B. Assouar, A. Hamdan, D. Genève, Proc. IEEE Ultrasonics Symp, 1490 (2010)

  7. M. Reusch, S. Cherneva, Y. Lu, A. Žukauskaitė, L. Kirste, K. Holc, O. Ambacher, Appl. Surf. Sci. 407, 307 (2017)

    Article  ADS  Google Scholar 

  8. P. Limsuwan, N. Udomkan, S. Meejoo, P. Winotai, Int. J. Mod. Phys. B. 19(12), 2073 (2005)

    Article  ADS  Google Scholar 

  9. Campanella, H. Acoustic wave and electromechanical resonators: concept to key applications. Artech House (2010)

  10. C. Caliendo, P. Imperatori, Appl. Phys. Lett. 83(8), 1641 (2003)

    Article  ADS  Google Scholar 

  11. M.Z. Aslam, V. Jeoti, S. Karuppanan, M.S. Pandian, E.M. Ferrer, K. Suresh, Sens. Actuators A 313, 112202 (2020)

    Article  Google Scholar 

  12. S. Barth, H. Bartzsch, D. Glöß, P. Frach, T. Modes, O. Zywitzki, G. Gerlach, Microsyst. Technol. 22(7), 1613 (2016)

    Article  Google Scholar 

  13. S.J. Kang, Y.H. Joung, Appl. Surf. Sci. 253(17), 7330 (2007)

    Article  ADS  Google Scholar 

  14. R.S. Weis, T.K. Gaylord, Appl. Phys. A. 37(4), 191 (1985)

    Article  ADS  Google Scholar 

  15. W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity: evolution and future of a technology, vol 114, Springer (2008)

  16. T. Aubert, O. Elmazria, B. Assouar, L. Bouvot, M. Oudich, Appl. Phys. Lett. 96(20), 203503 (2010)

    Article  ADS  Google Scholar 

  17. M. Akiyama, K. Kano, A. Teshigahara, Appl. Phys. Lett. 95(16), 162107 (2009)

    Article  ADS  Google Scholar 

  18. M. Akiyama, T. Harada, C.N. Xu, K. Nonaka, T. Watanabe, Thin Solid Films 350(1–2), 85 (1999)

    Article  ADS  Google Scholar 

  19. J. Zhou, H.F. Pang, L. Garcia-Gancedo, E. Iborra, M. Clement, M. De Miguel-Ramos, D.M. Wang, Microfluid. Nanofluid. 18(4), 537 (2015)

    Article  Google Scholar 

  20. C.S. Sandu, F. Parsapour, S. Mertin, V. Pashchenko, R. Matloub, T. LaGrange, P. Muralt, Phys. Status Solidi A. 216(2), 1800569 (2019)

    Article  ADS  Google Scholar 

  21. S. Fichtner, N. Wolff, G. Krishnamurthy, A. Petraru, S. Bohse, F. Lofink, B. Wagner, J. Appl. Phys. 122(3), 035301 (2017)

    Article  ADS  Google Scholar 

  22. M. Gillinger, K. Shaposhnikov, T. Knobloch, M. Schneider, M. Kaltenbacher, U. Schmid, Appl. Phys. Lett. 108(23), 231601 (2016)

    Article  ADS  Google Scholar 

  23. K. Y. Hashimoto K Y, S. Sato, A. Teshigahara, T. Nakamura, K. Kano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60(3), 637 (2013)

  24. K. Fares, A. Saad, A. Abdenacer, A. Fahima, Q. Zou, Sens. Actuators, A, 111980 (2020)

  25. W. Wang, P.M. Mayrhofer, X. He, M. Gillinger, Z. Ye, X. Wang, J.K. Luo, Appl. Phys. Lett. 105(13), 133502 (2014)

    Article  ADS  Google Scholar 

  26. M. Gillinger, T. Knobloch, M. Schneider, U. Schmid, Proc. MDPI. 1(4), 341 (2017)

    Google Scholar 

  27. M. Akiyama, K. Umeda, A. Honda, T. Nagase, Appl. Phys. Lett. 102(2), 021915 (2013)

    Article  ADS  Google Scholar 

  28. N. M. Feil, N. Kurz, D. F. Urban, A. Altayara, B. Christian, A. Ding, O. Ambacher, Proc. IEEE Ultrasonics Symp, 2588 (2019)

  29. M. Suzuki, S. Kakio, Proc. IEEE Ultrasonics Symp, 716 (2019).

  30. S. Manna, K.R. Talley, P. Gorai, J. Mangum, A. Zakutayev, G.L. Brennecka, C.V. Ciobanu, Phys. Rev. Appl. 9(3), 034026 (2018)

    Article  ADS  Google Scholar 

  31. P. H. Mayrhofer, D. Music, T. Reeswinkel, H. G. Fuß, J. M, Acta Mater. 56(11), 2469 (2008)

  32. N. Tatemizo, S. Imada, Y. Miura, H. Yamane, K. Tanaka, J. Phys.: Condens. Matter. 29(8), 085502 (2017)

    ADS  Google Scholar 

  33. F. Ahmad, L. Zhang, J. Zheng, I. Sidra, S. Zhang, Coatings 10(4), 306 (2020)

    Article  Google Scholar 

  34. P.M. Böttger, L. Braginsky, V. Shklover, E. Lewin, J. Patscheider, D.G. Cahill, M. Sobiech, J. Appl. Phys. 116(1), 013507 (2014)

    Article  ADS  Google Scholar 

  35. G. Kresse, J. Furthmüller. Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  36. S. Zhang, D. Holec, W.Y. Fu, C.J. Humphreys, M.A. Moram, J. Appl. Phys. 114(13), 133510 (2013)

    Article  ADS  Google Scholar 

  37. J. Tan, Y. Li, G. Ji, Comput. Mater. Sci. 58, 243 (2012)

    Article  Google Scholar 

  38. J. Phillips, Bonds and bands in semiconductors. Elsevier (2012)

  39. K. Hirata, H. Yamada, M. Uehara, S.A. Anggraini, M. Akiyama, ACS Omega 4(12), 15081 (2019)

    Article  Google Scholar 

  40. D. Royer, E. Dieulesaint, Elastic waves in solids I: Free and guided propagation, Springer Science & Business Media (1999)

  41. B. A. Auld, Acoustic Fields and Waves in Solids, A Wiley-Interscience Publication (1994)

  42. W. P. Mason, Physical acoustics: principles and methods, vol 9, Academic press (2013)

  43. F. Laidoudi, F. Boubenider, C. Caliendo, M. Hamidullah, J. Mech. 36(1), 7 (2020)

    Article  Google Scholar 

  44. T. Aubert, N. Naumenko, F. Bartoli, P. Pigeat, J. Streque, J. Ghanbaja, O. Elmazria, Appl. Phys. Lett. 115(8), 083502 (2019)

    Article  ADS  Google Scholar 

  45. T. Kimura, Y. Kishimoto, M. Omura, K. Y. Hashimoto, Jpn. J. Appl. Phys. 57(7S1), 07LD15 (2018)

  46. C. Caliendo, M. Hamidullah, J. Phys. D: Appl. Phys. 52(15), 153001 (2019)

    Article  ADS  Google Scholar 

  47. C.M. Lin, V. Yantchev, J. Zou, Y.Y. Chen, A.P. Pisano, J. Microelectromech. Syst. 23(1), 78 (2013)

    Article  Google Scholar 

  48. J. Zou, C.M. Lin, C.S. Lam, A.P. Pisano, J. Appl. Phys. 121(15), 154502 (2017)

    Article  ADS  Google Scholar 

  49. J. Streque, J. Camus, T. Laroche, S. Hage-Ali, H. M’Jahed, M. Rammal, O. Elmazria, IEEE Sens. J. (2020).

  50. Y. Ai, S. Yang, Z. Cheng, L. Zhang, L. Jia, B. Dong, Y. Zhang, J. Phys. D: Appl. Phys. 52(21), 215103 (2019)

    Article  ADS  Google Scholar 

  51. C. Caliendo, F. Laidoudi, Sensors. 20(5), 1380 (2020)

    Article  Google Scholar 

  52. C. Caliendo, Appl. Phys. Lett. 92, 033505 (2008)

    Article  ADS  Google Scholar 

  53. W.B. Wang, Y.Q. Fu, J.J. Chen, W.P. Xuan, J.K. Chen, X.Z. Wang, J.K. Luo, J. Micromech. Microeng. 26(7), 075006 (2016)

    Article  ADS  Google Scholar 

  54. G. Tang, T. Han, Q. Zhang, K. Yamazaki, T. Omori, K.Y. Hashimoto, J. Micromech. Microeng 26(11), 115002 (2016)

    Article  ADS  Google Scholar 

  55. Z. Hao, M. Park, D. G. Kim, A. Clark, R. Dargis, H. Zhu, A. Ansari, IEEE MTT-S International Microwave Symposium (IMS). 786 (2019)

  56. M. Sinusía Lozano, Z. Chen, O.A. Williams, G. F. Iriarte, Phys. Status Solidi A. 216(20), 1900360 (2019)

  57. M. Park, Z. Hao, R. Dargis, A. Clark, A. Ansari, J. Microelectromech. Syst. 29(4), 490 (2020)

    Article  Google Scholar 

  58. A. Ding, L. Kirste, Y. Lu, R. Driad, N. Kurz, V. Lebedev, O. Ambacher, Appl. Phys. Lett. 116(10), 101903 (2020)

    Article  ADS  Google Scholar 

  59. J. Xu, J.S. Thakur, G. Hu, Q. Wang, Y. Danylyuk, H. Ying, G.W. Auner, Appl. Phys. A. 83(3), 411 (2006)

    Article  ADS  Google Scholar 

  60. M. Richardson, S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, Appl. Phys. Lett. 104(25), 253501 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Directorate of Scientific Research and Technological Development DGRSDT of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farouk Laidoudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laidoudi, F., Amara, S., Caliendo, C. et al. High quality and low loss surface acoustic wave SAW resonator based on chromium-doped AlN on sapphire. Appl. Phys. A 127, 255 (2021). https://doi.org/10.1007/s00339-021-04395-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04395-y

Keywords

Navigation