Skip to main content
Log in

Effect of amplitude and frequency of limit cycle oscillators on their coupled and forced dynamics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The occurrence of synchronization and amplitude death phenomena due to the coupled interaction of limit cycle oscillators (LCO) has received increased attention over the last few decades in various fields of science and engineering. Studies pertaining to these coupled oscillators are often performed by studying the effect of various coupling parameters on their mutual interaction. However, the effect of system parameters (i.e., the amplitude and frequency) on the coupled interaction of such LCO has not yet received much attention, despite their practical importance. In this paper, we investigate the dynamical behavior of time-delay coupled Stuart–Landau (SL) oscillators exhibiting subcritical Hopf bifurcation for the variation of amplitude and frequency of these oscillators in their uncoupled state. For identical SL oscillators, a gradual increase in the amplitude of LCO shrinks the amplitude death regions observed between the regions of in-phase and anti-phase synchronization leading to its eventual disappearance, resulting in the occurrence of phase-flip bifurcations at higher amplitudes of LCO. We also observe an alternate existence of in-phase and anti-phase synchronization regions for higher values of time delay, whose prevalence of occurrence increases with an increase in the frequency of the oscillator. With the introduction of frequency mismatch, the region of amplitude death. The forced response of SL oscillator shows an asymmetry in the Arnold tongue and the manifestation of asynchronous quenching of LCO. An increase in the amplitude of LCO narrows the Arnold tongue and reduces the region of asynchronous quenching observed in the system. Finally, we compare the coupled and forced response of SL oscillators with the corresponding experimental results obtained from laminar thermoacoustic oscillators and the numerical results from van der Pol (VDP) oscillators. We show that the SL model qualitatively displays many features observed experimentally in coupled and forced thermoacoustic oscillators. In contrast, the VDP model does not capture most of the experimental results due to the limitation in the independent variation of system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge, UK (2001)

    Book  MATH  Google Scholar 

  2. Kuramoto, Y.: Chemical Oscillations. Waves and Turbulence, Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  3. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  4. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wirkus, S., Rand, R.: Dynamics of two coupled van der Pol oscillators with delay coupling. Nonlinear Dyn. 30, 205–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Han, W., Cheng, H., Dai, Q., Li, H., Ju, P., Yang, J.: Amplitude death, oscillation death, wave, and multistability in identical Stuart-Landau oscillators with conjugate coupling. Commun. Nonlinear Sci. Numer. Simul. 39, 73–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karnatak, R., Ramaswamy, R., Prasad, A.: Amplitude death in the absence of time delays in identical coupled oscillators. Phys. Rev. E 76, 035201 (2007)

    Article  Google Scholar 

  8. Prasad, A.: Amplitude death in coupled chaotic oscillators. Phys. Rev. E 72, 056204 (2005)

    Article  MathSciNet  Google Scholar 

  9. Lakshmanan, M., Rajaseekar, S.: Nonlinear dynamics: integrability, chaos and patterns. Springer-Verlag, Berlin (2003)

    Book  Google Scholar 

  10. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics,Biology, Chemistry, and Engineering. CRC Press, USA (2018)

    Book  MATH  Google Scholar 

  11. Thomas, N., Mondal, S., Pawar, S.A., Sujith, R.I.: Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators. Chaos 28, 033119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zou, W., Senthilkumar, D.V., Nagao, R., Kiss, I.Z., Tang, Y., Koseska, A., Kurths, J.: Restoration of rhythmicity in diffusively coupled dynamical networks. Nature Commun. 6, 1–9 (2015)

    Article  Google Scholar 

  13. Zhao, N., Sun, Z., Xu, W.: Enhancing coherence via tuning coupling range in nonlocally coupled Stuarta Landau oscillators. Sci. Rep. 8, 1–12 (2018)

    Google Scholar 

  14. Premraj, D., Suresh, K., Banerjee, T., Thamilmaran, K.: Bifurcation delay in a network of locally coupled slow-fast systems. Phys. Rev. E 98, 022206 (2018)

    Article  MathSciNet  Google Scholar 

  15. Premraj, D., Suresh, K., Thamilmaran, K.: Effect of processing delay on bifurcation delay in a network of slow-fast oscillators. Chaos 29, 123127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pikovsky, A., Rosenblum, M.: Dynamics of globally coupled oscillators: Progress and perspectives. Chaos 25, 097616 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dh́uys, O., Vicente, R., Danckaert, J., Fischer, I.: Amplitude and phase effects on the synchronization of delay-coupled oscillators. Chaos 20, 043127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Prasad, A., Kurths, J., Dana, S.K., Ramaswamy, R.: Phase-flip bifurcation induced by time delay. Phys. Rev. E 74, 035204 (2006)

    Article  MathSciNet  Google Scholar 

  19. Liu, W., Xiao, J., Yang, J.: Partial amplitude death in coupled chaotic oscillators. Phys. Rev. E 72, 057201 (2005)

    Article  Google Scholar 

  20. Zou, W., Senthilkumar, D.V., Duan, J., Kurths, J.: Emergence of amplitude and oscillation death in identical coupled oscillators. Phys. Rev. E 90, 032906 (2014)

    Article  Google Scholar 

  21. Balanov, A., Janson, N., Postnov, D., Sosnovtseva, O.: Synchronization: From Simple to Complex. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  22. Lieuwen, T. C., Yang, V.: Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics, AIAA, Inc. (2005)

  23. Chanaud, R.C.: Aerodynamic whistles. Sci. Am. 222, 40 (1970)

    Article  Google Scholar 

  24. Dange, S., Manoj, K., Banerjee, S., Pawar, S.A., Mondal, S., Sujith, R.I.: Oscillation quenching and phase-flip bifurcation in coupled thermoacoustic systems. Chaos 29, 093135 (2019)

    Article  Google Scholar 

  25. Mondal, S., Pawar, S.A., Sujith, R.I.: Forced synchronization and asynchronous quenching of periodic oscillations in a thermoacoustic system. J. Fluid Mech. 864, 73–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Juniper, M.P., Sujith, R.I.: Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661–689 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roy, A., Mondal, S., Pawar, S.A., Sujith, R.I.: On the mechanism of open-loop control of thermoacoustic instability in a laminar premixed combustor. J. Fluid Mech. 884, 1–30 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jegal, H., Moon, K., Gu, J., Li, L.K., Kim, K.T.: Mutual synchronization of two lean-premixed gas turbine combustors: Phase locking and amplitude death. Combust. Flame 206, 424–437 (2019)

    Article  Google Scholar 

  29. Guan, Y., Gupta, V., Kashinath, K., Li, L.K.: Open-loop control of periodic thermoacoustic oscillations: experiments and low-order modelling in a synchronization framework. Proc. Combust. Inst. 37(4), 5315–5323 (2019)

    Article  Google Scholar 

  30. Penelet, G., Biwa, T.: Synchronization of a thermoacoustic oscillator by an external sound source. Am. J. Phys. 81, 290–297 (2013)

    Article  Google Scholar 

  31. Biwa, T., Tozuka, S., Yazaki, T.: Amplitude death in coupled thermoacoustic oscillators. Phys. Rev. Appl. 3, 034006 (2015)

    Article  Google Scholar 

  32. Moon, J.Y., Lee, U., Blain-Moraes, S., Mashour, G.A.: General relationship of global topology, local dynamics, and directionality in large-scale brain networks. PLoS Comput. Biol. 11, e1004225 (2015)

    Article  Google Scholar 

  33. Thompson, M.C., Gal, P.L.: The Stuart Landau model applied to wake transition revisited. Eur. J. Mech. B 23, 219 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Aoyagi, T.: Network of neural oscillators for retrieving phase information. Phys. Rev. Lett. 74, 4075 (1995)

    Article  Google Scholar 

  35. Provansal, M., Mathis, C., Boyer, L.: Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 1–22 (1987)

    Article  MATH  Google Scholar 

  36. Thounaojam, U.S., Amit, S.: Phase-flip me diate d partial amplitude death in relay oscillators. Chaos, Solitons Fractals 124, 97 (2019)

    Article  MathSciNet  Google Scholar 

  37. Subramanian, P., Sujith, R.I., Wahi, P.: Subcritical bifurcation and bistability in thermoacoustic systems. J. Fluid Mech. 715, 210–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Manoj, K., Pawar, S.A., Sujith, R.I.: Experimental Evidence of Amplitude Death and Phase-Flip Bifurcation between In-Phase and Anti-Phase Synchronization. Sci. Rep. 8, 11626 (2018)

    Article  Google Scholar 

  39. Adhikari, B.M., Prasad, A., Dhamala, M.: Time-delay-induced phase-transition to synchrony in coupled bursting neurons. Chaos 21, 023116 (2011)

    Article  MathSciNet  Google Scholar 

  40. Tukhlina, N., Rosenblum, M.: Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. J. Biol. Phys. 34, 301 (2008)

    Article  Google Scholar 

  41. Inorsky, M.N.: On asynchronous quenching. IEEE Trans. Autom. Control 12, 225–227 (1967)

    Article  Google Scholar 

  42. Matveev, K.I.: Thermoacoustic instabilities in the Rijke tube: Experiments and modeling, Ph.D. thesis (California Institute of Technology, 2003)

  43. Gopalakrishnan, E.A., Sujith, R.I.: Influence of system parameters on the hysteresis characteristics of a horizontal Rijke tube. Inter. J. Spray Combustion Dyn. 6, 293–316 (2014)

    Article  Google Scholar 

  44. Etikyala, S., Sujith, R.I.: Change of criticality in a prototypical thermoacoustic system. Chaos 27(2), 023106 (2017)

    Article  Google Scholar 

  45. Prasad, A.: Amplitude death in coupled chaotic oscillators. Phys. Rev. E 72, 056204 (2005)

    Article  MathSciNet  Google Scholar 

  46. Balusamy, S., Li, L.K., Han, Z., Juniper, M.P., Hochgreb, S.: Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35, 3229–3236 (2015)

    Article  Google Scholar 

  47. Kashinath, K., Li, L.K., Juniper, M.P.: Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech. 838, 690–714 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  Google Scholar 

  49. Perlikowski, P., Stefanski, A., Kapitaniak, T.: Comment on synchronization in a ring of four mutually coupled van der pol oscillators: theory and experiment. Phys. Rev. E 77, 048201 (2008)

    Article  Google Scholar 

  50. Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F., Hairston, N.G.: Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Office of Naval Research Global (ONRG) USA (N62909-18-1-2061, Contract Monitor: Dr. R. Kolar) and J. C. Bose fellowship (JCB /2018/000034/SSC) from Department of Science and Technology (DST) India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samadhan A. Pawar.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premraj, D., Manoj, K., Pawar, S.A. et al. Effect of amplitude and frequency of limit cycle oscillators on their coupled and forced dynamics. Nonlinear Dyn 103, 1439–1452 (2021). https://doi.org/10.1007/s11071-020-06135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06135-y

Keywords

Navigation