Skip to main content
Log in

Maestrichtian-Danian andesite series of the Eastern Sikhote Alin: Mineralogy, geochemistry, and petrogenetic aspects

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

In the stratigraphic sequence of volcanic rocks in the Eastern Sikhote Alin, Maestrichtian-Danian predominantly andesitic volcanics are characterized by a boundary position between the Late Cretaceous subduction, mostly acid volcanic rocks and Cenozoic post-subduction basaltoids. Data on these rocks are important for elucidating the genesis of andesitic magmas, constraining and specifying the geodynamic evolutionary stages in this territory, and revealing the conditions under which the parental melts of these rocks were derived and evolved. Results of detailed mineralogical and geochemical studies, including ICP-MS analysis for trace elements point to a hybrid character of the andesitic volcanic rocks and an important role of fractional crystallization and crustal contamination in their genesis. Although geological evidence (variations in the style of volcanism, the composition of its products, and the character of their distribution) testifies to a change in the geodynamic environment in the Eastern Sikhote Alin in the Maestrichtian-Danian, geochemically the volcanics of this age range are typical subduction-related rocks with anomalously low concentrations of Nb and high contents of K, Ba, Rb, Pb, and U. The volcanic piles contain no adakites, which are indicators of the geodynamic environment in which slab windows are formed. The inconsistency between geological and geochemical indicators of the geodynamic environment suggests certain genetic features of the transitional magmatic series. The parental magmas of the andesitic volcanics were derived from the suprasubduction mantle wedge, which had been metasomatically recycled in the course of the dehydration and melting of the subducted oceanic slab. The increasing extension provided the possibility for the parental basaltic magmas to enter upper crustal levels, where they could interact with the host rocks and form hybrid andesitic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Anderson, “Magma Mixing: Petrological Process and Volcanological Tool,” J. Volcanol. Geotherm. Res. 1, 3–33 (1976).

    Article  Google Scholar 

  2. T. N. Anderson and D. N. Lindsley, “Internally Consistent Solution Models for Fe-Mg-Mn-Ti Oxides,” Am. Mineral. 73, 714–726 (1988).

    Google Scholar 

  3. G. P. Avdeiko, S. V. Popruzhenko, and A. A. Palueva, “Modern Tectonic Structure of the Kurile-Kamchatka Area and the Conditions of Magma-Forming Processes,” in Geodynamics and Volcanism of the Kuril-Kamchatka Island Arc System (Petropavlovsk-Kamchatskii, 2001), pp. 9–34 [in Russian].

  4. J. S. Beard and G. E. Lofgren, “Dehydration Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3 and 6–9 kbar,” J. Petrol. 32, 365–401 (1991).

    Google Scholar 

  5. Deep Structure of Primorye: DSS Data (Nauka, Moscow, 1976) [in Russian].

  6. D. J. DePaolo, “Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization,” Earth Planet. Sci. Lett. 3, 189–202 (1981).

    Article  Google Scholar 

  7. M. J. Defant and M. S. Drummond, “Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere,” Nature 347, 662–665 (1990).

    Article  Google Scholar 

  8. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals (Wiley, New York, 1962; Mir, Moscow, 1965).

    Google Scholar 

  9. F. Dorendorf, U. Wiechert, and G. Worner, “Hydrated Sub-Arc Mantle: a Source for the Kluchevskoy Volcano, Kamchatka, Russia,” Earth Planet. Sci. Lett. 175, 69–86 (2000).

    Article  Google Scholar 

  10. J. C. Eichlverger, “Andesitic Volcanism and Crustal Evolution,” Nature 275, 21–27 (1978).

    Article  Google Scholar 

  11. A. Ewart, “The Mineralogy and Petrology of Tertiary-Recent Orogenic Volcanic Rocks: with Special Reference to the Andesitic-Basaltic Compositional Range,” in Andesites, Ed. by R.S. Thorpe (Wiley, Chichester, 1982), pp. 25–98.

    Google Scholar 

  12. Geochemistry of the Eastern Sikhote Alin and Okhotsk Belts (Nauka, Moscow, 1981) [in Russian].

  13. J. B. Gill, Orogenic Andesites and Plate Tectonics (Springer, New York, 1981).

    Google Scholar 

  14. M. Gorring, B. Singer, J. Gowers, and S. M. Kay, “Plio-Pleistocene Basalts from the Meseta del Lago Buenos Aires, Argentina: Evidence for Asthenosphere-Lithosphere Interactions during Slab Window Magmatism,” Chem. Geol. 193, 215–235 (2003).

    Article  Google Scholar 

  15. D. H. Green, “Contrasted Melting Regions in a Pyrolite Upper Mantle under Mid-Oceanic Ridge, Stable Crust and Island Arc Environments,” Tectonophysics 17, 285–297 (1973).

    Article  Google Scholar 

  16. D. Harry and N. L. Green, “Slab Dehydration and Basalt Petrogenesis in Subduction System Involving Very Young Ocean Lithosphere,” Chem. Geol. 160, 303–333 (1999).

    Article  Google Scholar 

  17. A. W. Hofman, “Chemical Differentiation of the Earth: the Relationship between Mantle, Continental Crust, and Oceanic Crust,” Earth Planet. Sci. Lett. 90, 297–314 (1988).

    Article  Google Scholar 

  18. M. J. Hole, G. Rogers, A. D. Saunders, and M. Storey, “Relation between Alkalic Volcanism and Slab-Window Formation,” Geology 19, 657–660 (1991).

    Article  Google Scholar 

  19. S. K. Hwang and S. W. Kim, “Petrology of Cretaceous Volcanic Rocks in the Milyang-Yangsan Area, Korea: Petrotectonic Setting,” J. Geol. Soc. Korea 30, 229–241 (1994).

    Google Scholar 

  20. B. S. Kamber, A. Ewart, K. D. Collerson, et al. “Fluid-Mobile Trace Element Constraints on the Role of Slab Melting and Implications for Archaean Crustal Growth Models,” Contrib. Mineral. Petrol. 144, 38–56 (2002).

    Google Scholar 

  21. H. Keppler, “Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids,” Nature 380, 237–240 (1996).

    Article  Google Scholar 

  22. A. B. Kersting, R. J. Arculus, and D. A. Gust, “Lithospheric Contributions to Arc Magmatism: Isotope Variations Along Strike in Volcanoes of Honshu, Japan,” Science 272, 1464–1468 (1996).

    Article  Google Scholar 

  23. A. Kersting and R. J. Arculus, “Klyuchevskoy Volcano, Kamchatka, Russia: The Role of High-Flux Recharge, Tapped and Fractionated Magma Chamber(s) in the Genesis of High-Al2O3 from High-MgO Basalt,” J. Petrol. 35, 1–41 (1994).

    Google Scholar 

  24. A. I. Khanchuk, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (Moscow, 1993).

  25. A. I. Khanchuk, V. V. Golozubov, Yu. A. Martynov, and V. P. Simanenko, “Early Cretaceous and Paleogene Transform (Californian-Type) Continental Margins of the Russian Far East,” in Asian Tectonics (GEOS, Moscow, 1997), pp. 240–243 [in Russian].

    Google Scholar 

  26. F. H. Hatch, A. K. Wells, and M. K. Wells, Petrology of the Igneous Rocks (Allen-Unwin, London, 1972; Mir, Moscow, 1975).

    Google Scholar 

  27. J.-I. Kimura and T. Yoshida, “Magma Plumbing System beneath Ontake Volcano, Central Japan,” Island Arc 8, 1–29 (1999).

    Article  Google Scholar 

  28. J.-I. Kimura, T. Yoshida, and S. Iizumi, “Origin of Low-K Intermediate Lavas at Nekoma Volcano, NE Honshu Arc, Japan: Geochemical Constraints for Lower-Crustal Melts,” J. Petrol. 43, 631–661 (2002).

    Article  Google Scholar 

  29. E. N. Lishnevskii, “Main Features of Tectonics and Deep-Seated Structure of Continental Part of the Russian Far East: Gravimetric Data,” in Structure and Evolution of the Earth Crust at the Russian Far East (Nauka, Moscow, 1969), pp. 21–31 [in Russian].

    Google Scholar 

  30. Yu. A. Martynov, Geochemistry of Basalts of Active Continental Margins and Mature Island Arcs: Evidence from Northwestern Pacifics (Dal’nauka, Vladivostok, 1999a) [in Russian].

    Google Scholar 

  31. Yu. A. Martynov, “High-Alumina Basaltic Volcanism of the Eastern Sikhote Alin: Petrology and Geodynamics,” Petrologiya 7, 58–79 (1999b) [Petrology 7, 53–72 (1999b)].

    Google Scholar 

  32. Yu. A. Martynov, A. A. Chashchin, S. V. Rasskazov, and E. V. Saranina, “Late Miocene-Pliocene Basaltic Volcanism in the South of the Russian Far East as an Indicator of the Lithospheric Mantle Heterogeneity in the Continent-Ocean Transition Zone,” Petrologiya 10(2), 189–209 (2002) [Petrology 10, 165–183 (2002)].

    Google Scholar 

  33. Yu. A. Martynov, D. W. Lee, V. V. Golozubov, and S. V. Rasskazov, “Geochemistry and Geodynamic Setting of Late Cretaceous-Miocene Basalts in the Southern Korean Peninsula,” Geokhimiya, No. 6, 597–609 (2006) [Geochem. Int. 44, 547–558 (2006)].

  34. D. M. Miller, S. L. Goldstein, and C. H. Langmuir, “Cerium/Lead Isotope Ratios in Arc Magmas and the Enrichment of Lead in the Continents,” Nature 368, 514–519 (1994).

    Article  Google Scholar 

  35. B. N. Natal’in and Ch. B. Borukevich, “Mesozoic Structures in the Southern Far East,” Geotektonika, No. 1, 84–97 (1991).

  36. S. Okamura, R. J. Arculus, and Yu. A. Martynov, “Cenozoic Magmatism of the North-Eastern Eurasian Margin: the Role of Lithosphere versus Asthenosphere,” J. Petrol. 46, 221–253 (2005).

    Article  Google Scholar 

  37. L. M. Parfenov, Continental Margin and Island Arcs of the Northeastern Asian Mesozoides (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  38. J. A. Pearce and I. J. Parkinson, “Trace Element Model for Mantle Melting: Application to Volcanic Arc Petrogenesis,” in Magmatic Processes and Plate Tectonics, Ed. by H. M. Prichard, T. Alabaster, N. B. W. Harris, et al., Geol. Soc. London Special. Publ. 76, 373–403 (1993).

  39. M. Portnyagin, K. Hoernle, G. Avdeiko, et al., “Transition from Arc to Oceanic Magmatism at the Kamchatka-Aleutian Junction,” Geology 33, 25–28 (2005).

    Article  Google Scholar 

  40. A. Pouclet A., J.-S. Lee, P. Vidal, et al., “Cretaceous to Cenozoic Volcanism in South Korea and in the Sea of Japan: Magmatic Constraints on the Opening of the Back-Arc Basin,” in Volcanism Associated with Extension at Consuming Plate Margins, Ed. by J. L. Smellie, Geol. Soc. London Spec. Publ. 81, 169–191 (1995).

  41. G. Prouteau, B. Scaillet, M. Pichavant, et al., “Fluid-present Melting of Ocean Crust in Subduction Zones,” Geology 27, 1111–1114 (1999).

    Article  Google Scholar 

  42. S. V. Rasskazov, A. Boven, L. Andre, et al., “Evolution of Magmatism in the Northeastern Baikal Rift System,” Petrologiya 5, 115–136 (1997) [Petrology 5, 101–120 (1997)].

    Google Scholar 

  43. R. Rudnick and D. M. Fountain, “Nature and Composition of the Continental Crust: a Lower Crustal Perspective,” Rev. Geophys. 33, 267–309 (1995).

    Article  Google Scholar 

  44. M. Sakuyama, “Petrological Study of the Myoko and Kurohime Volcanoes, Japan: Crystallization Sequence and Evidence for Magma Mixing,” J. Petrol. 22, 553–583 (1981).

    Google Scholar 

  45. P. Samaniego, H. Martin, M. Monzier M., et al., “Temporal Evolution of Magmatism in the Northern Volcanic Zone of the Andes: the Geology and Petrology of Cayambe Volcanic Complex (Ecuador),” J. Petrol. 46, 2225–2252 (2005).

    Article  Google Scholar 

  46. I. M. Shervais, “Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas,” Earth Planet. Sci. Lett. 59, 101–118 (1982).

    Article  Google Scholar 

  47. M. Shimazu, S. Yoon, and M. Tateishi, “Tectonics and Volcanism in the Sado-Pohang Belt from 20 to 14 Ma and Opening of the Yamato Basin of the Japan Sea,” Tectonophysics 181, 321–330 (1990).

    Article  Google Scholar 

  48. V. P. Simaneko, “Lower Cretaceous Basalt-Andesite Association of the Northern Sikhote Alin,” Tikhookean. Geol., No. 6, 86–95 (1990).

  49. V. P. Simanenko, “Late Mesozoic Volcanic Arcs of the Eastern Sikhote Alin and Sakhalin,” Tikhookean. Geol., No. 1, 7–13 (1986).

  50. S.-S. Sun and W. I. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Ocean Basins, Ed. by A.D. Saunders and M.J. Norry, Geol. Soc. London Spec. Publ. 42, 313–345 (1989).

  51. S. R. Taylor and S. M. McLennan, “The Geochemical Evolution of the Continental Crust,” Rev. Geophys. 33, 241–265 (1995).

    Article  Google Scholar 

  52. R. N. Thompson, “British Tertiary Volcanic Province,” Scott. J. Geol. 18, 49–107 (1982).

    Article  Google Scholar 

  53. K. H. Wedepohl, “The Composition of the Continental Crust,” Geochim. Cosmochim. Acta. 59, 1217–1232 (1995).

    Article  Google Scholar 

  54. M. Wilson, Igneous Petrogenesis. A Global Tectonic Approach (Harper Collins Academic, London, 1991).

    Google Scholar 

  55. D. A. Wood, “The Application of Th-Hf-Ta Diagrams to the Problem of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas on the British Tertiary Volcanic Province,” Earth Planet Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  56. G. M. Yogodzinski, R. W. Kay, O. N. Volynets, et al., “Magnesian Andesite in the Western Aleutian Komandorsky Region: Implications for Slab Melting and Processes in the Mantle Wedge,” Geol. Soc. Am. Bull. 107, 505–519 (1995).

    Article  Google Scholar 

  57. G. M. Yogodzinski, J. M. Lees, T. G. Churikova, et al., “Geochemical Evidence of Subducting Oceanic Lithosphere at Plate Edges,” Nature 409, 500–504 (2001).

    Article  Google Scholar 

  58. S. H. Yun “Strontium Isotope Composition and Petrochemistry of the Cretaceous Chaeyaksan Volcanics, Northern Yucheon Volcanic Field, South Korea,” J. Geol. Soc. Korea 34, 161–171 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.A. Martynov, A.A. Chashchin, V.P. Simanenko, A.Yu. Martynov, 2007, published in Petrologiya, 2007, Vol. 15, No. 3, pp. 295–316.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynov, Y.A., Chashchin, A.A., Simanenko, V.P. et al. Maestrichtian-Danian andesite series of the Eastern Sikhote Alin: Mineralogy, geochemistry, and petrogenetic aspects. Petrology 15, 275–295 (2007). https://doi.org/10.1134/S0869591107030058

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591107030058

Keywords

Navigation