Skip to main content
Log in

Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: Downwelling limb of a hydrothermal circulation cell

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

A model is development for the kinetic and thermodynamic simulation of the interaction of seawater and its metamorphosed derivatives with crustal rocks in slow-spreading ridges. The thermodynamic modulus of the model is based on the GEOCHEQ complex, which makes it possible to simulate equilibria in systems of aqueous solutions-minerals-gases. The calculating code was modified and adjusted for the thermodynamic-kinetic simulation of the passage of irreversible solution-rock reactions with time. The simulations were carried out for a simplified crustal vertical section of slow-spreading (Hess-type) ridges, which consist only of mantle peridotites (spinel harzburgites). The results of our simulations demonstrate that the degree of peridotite serpentinization under the effect of low-temperature seawater when the rocks are exposed at the seafloor surface remains very low even after 10000 years of interaction. Serpentinization becomes efficient only at temperatures of 130–150°C at crustal depths of 3.5–4.5 km. The results of our simulations allowed us to develop a thermodynamic model for the origin of hydrothermal systems in peridotites in slow-spreading ridges, with regard for the major stages in the material and tectonic evolution of the Hess crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aagaard and H. C. Helgeson, “Thermodynamic and Kinetic Constraints on Reaction Rates among Minerals and Aqueous Solutions: I. Theoretical Considerations,” Am. J. Sci. 282, 237–285 (1982).

    Google Scholar 

  2. V. A. Alekseev, “Equations for the Dissolution Reaction Rates of Montmorillonite, Illite, and Chlorite,” Geokhimiya, No. 8, 842–853 (2007) [Geochem. Int. 45, 770–780 (2007)].

  3. V. A. Alekseev, “Kinetics of the Reaction of Rock-Forming Minerals with Aqueous Solutions,” in Geological Evolution and Self-Organization of the Water-Rock System. Vol. 1. Water-Rock System in the Earth’s Crust: Interaction, Kinetics, Equilibrium, and Modeling, Ed. by S. L. Shvartsev (SO RAN, 2005) [in Russian].

  4. D. E. Allen and W. E. Seyfried, Jr., “Serpentinization and Heat Generation: Constraints from Lost City and Rainbow Hydrothermal Systems,” Geochim. Cosmochim. Acta. 68, 1347–1354 (2004).

    Article  Google Scholar 

  5. J. C. Alt and W. C. Shanks, “Serpentinization of Abyssal Peridotites from the MARK area, Mid-Atlantic Ridge: Sulfur Geochemistry and Reaction Modeling,” Geochim. Cosmochim. Acta 67, 641–653 (2003).

    Article  Google Scholar 

  6. M. Andreani, C. Mevel, A.-M. Boullier, et al., “Dynamic Control on Serpentine Crystallization in Veins: Constraints on Hydration Processes in Oceanic Peridotites,” Geochem. Geophys. Geosyst. 8(2), Q02012 (2007), doi:10.1029/2006GC001373.

  7. E. T. Baker, H. N. Edmonds, and P. J. Michael, “Hydrothermal Venting in Magma Deserts: the Ultraslow Spreading Gakkel and Southwest Indian Ridges,” Geochem. Geophys. Geosyst. 5(8), Q 08002 (2004), doi: 10.1029/2004G000712.

  8. F. Barriga, A. Dias, A. Marques, et al., “Replacement Processes in Volcanogenic Massive Sulfide Deposits: The Key to Giant Orebodies,” Geol. Soc. Am. Annu. Meet. 15–19 (2002).

  9. B. A. Bazylev, “Metamorphism of Ultrabasites from the Atlantis Fracture Zone, Atlantic Ocean: Evidnece of Deep Water Penetration in the Oceanic Lithosphere,” Dokl. Akad. Nauk 323, 741–743 (1992).

    Google Scholar 

  10. B. A. Bazylev, “Evolution of the Avaruite-Bearing Mineral Assemblage in the Peridotites from 15°20′ Fracture Zone, Atlantic Ocean, as One of the Occurrences of the Oceanic Metamorphism,” Ross. Zh. Nauk Zemle 2(3/4), 279–295 (2000).

    Google Scholar 

  11. B. A. Bazylev, Extended Abstract of Doctoral Dissertation in Geology and Mineralogy (GEOKhI RAN, Moscow, 2003).

    Google Scholar 

  12. M. E. Berndt, D. E. Allen, and W. E. Seyfried, “Reduction of CO2 during Serpentinization of Olivine at 300°C and 500 bar,” Geology 24, 351–354 (1996).

    Article  Google Scholar 

  13. D. K. Blackman, J. A. Karson, D. S. Kelley, et al., “Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): Implications for the Evolution of an Ultramafic Oceanic Core Complex,” Mar. Geophys. Res. 23, 443–469 (2002).

    Article  Google Scholar 

  14. Yu. A. Bogdanov, N. S. Bortnikov, I. V. Vikent’ev, et al., “Mineralogical-Geochemical Peculiarities of Hydrothermal Sulfide Ores and Fluids in the Rainbow Field Associated with Serpentinites, Mid-Atlantic Ridge (36°14′N),” Geol. Rudn. Mestorozhd. 44(6), 510–542 (2002) [Geol. Ore Dep. 44, 444–473 (2002)]

    Google Scholar 

  15. N. S. Bortnikov, I. V. Vikentyev, I. V. Chernyshov, et al., “Lead Isotope Systematics in Sulfides from Modern Hydrothermal Vents: A Comparison of Mid-Ocean and Back Arc Setting (Pacific),” Mineral. Mag. 58a, 107–108 (1994).

    Article  Google Scholar 

  16. H. Bougault, J. Charlou, Y. Fouquet, et al., “Fast and Slow Spreading Ridges: Structure and Hydrothermal Activity, Ultramafic Topographic Highs, and CH4 Output,” J. Geophys. Res. 98(B6), 9643–9651 (1993).

    Article  Google Scholar 

  17. S. Brantley, “Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2004), Vol. 5, 73–118.

    Google Scholar 

  18. M. Cannat, Y. Lagabrielle, H. Bougault, et al., “Ultramafic and Gabbroic Exposures at the Mid-Atlantic Ridge: Geologic Mapping in the 15°N Region,” Tectonophysics 279, 193–213 (1997).

    Article  Google Scholar 

  19. J. Caruso and J. V. Chernosky, “The Stability of Lizardite,” Can. Mineral. 17, 757–769 (1979).

    Google Scholar 

  20. J. Charlou, L. Dmitriev, H. Bougault, et al., “Hydrothermal CH4 between 12°N and 15°N over the Mid-Atlantic Ridge,” Deep Sea Res. 35, 121–131 (1988).

    Article  Google Scholar 

  21. J. Charlou, J. P. Donval, Y. Fouquet, et al., “Geochemistry of High H2 and CH4 Vent Fluids Issuing from Ultramafic Rocks at the Rainbow Hydrothermal Field (36°14′N, MAR),” Chem. Geol. 191, 345–359 (2002).

    Article  Google Scholar 

  22. J. Charlou, J. P. Donval, P. Jean-Baptiste, et al., “Abiogenic Petroleum Generated by Serpentinization of Oceanic Mantellic Rocks,” AAPG Res. Conf. Calgary (Canada, 2005), p. 44.

  23. Y. Chen and S. Brantley, “Dissolution of Forsteritic Olivine at 65°C and 2 < pH < 5,” Chem. Geol. 165, 267–281 (2000).

    Article  Google Scholar 

  24. J. V. Chernosky, R. G. Berman, and L. T. Bryndzia, “Stability, Phase Relations, and the Thermodynamic Properties of Chlorite and Serpentine Group Minerals,” in Hydrous Phyllosilicates, Ed. by S. W. Bailey. Rev. Mineral. 19, 295–346 (1988).

  25. J. V. J. Chernosky, An Experimental Investigation of the Serpentine and Chlorite Group Minerals in the System MgO-Al 2 O 3 -SiO 2 -H 2 O (Mass. Inst. of Technol, Cambridge, 1973).

    Google Scholar 

  26. H. J. B. Dick, J. Lin, and H. Shouten, “An Ultraslow-Spreading Class of Ocean Ridges,” Nature 426, 405–412 (2003).

    Article  Google Scholar 

  27. H. J. B. Dick, P. S. Meyer, R. S. Bloomes, et al., “Lithostratigraphic Evolution of an In-Situ Section of Oceanic Layer 3,” Proc. Ocean Drill. Progr. Sci. Res. 118, 439–538 (1991).

    Google Scholar 

  28. H. J. B. Dick, J. H. Natland, and B. Ildefonse, “Past and Future Impact of Deep Drilling in the Oceanic Crust and Mantle,” Oceanography 19, 72–80 (2006).

    Google Scholar 

  29. E. V. Dobrovol’skii, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (IGN AN USSR, Kiev, 1978).

    Google Scholar 

  30. E. O. Dubinina, I. V. Chernyshev, N. S. Bortnikov, et al., “Isotopic-Geochemical Characteristics of the Lost City Hydrothermal Field,” Geokhimiya, No. 11, 1223–1236 (2007) [Geochem. Int. 45, 1124–1130 (2007)].

  31. B. W. Evans, “The Serpentinite Multisystem Revisited: Chrysotile is Metastable,” Int. Geol. Rev. 46, 479–506 (2004).

    Article  Google Scholar 

  32. B. W. Evans, W. Johannes, Y. Oterdoom, et al., “Stability of Chrysotile and Antigorite in the Serpentine Multisystem,” Schweiz. Mineral. Petrogr. Mitt. 56, 79–93 (1976).

    Google Scholar 

  33. Expedition 304/305 Scientists, Site U1309, Ed. by D. K. Blackman, B. Ildefonse, B. E. John, Y. Ohara, et al., Proc. IODP, 304/305: College Station TX (Integrated Ocean Drilling Program Management International, 2006).

  34. F. Fontaine, M. Cannat, J. Escartin, et al., “Characteristics of Hydrothermal Convection in Inclined Layers: Implications for Hydrothermal Activity at Slow-Spreading Axis,” Eos Trans. AGU 87, Abstract B31B–1109 (2006).

    Google Scholar 

  35. Y. Fouquet, J. Charlou, H. Ondreas, et al., “Discovery and First Submersible Investigations on the Rainbow Hydrothermal Field on the MAR (36°14′N),” Eos Trans. 78, 832 (1997).

    Google Scholar 

  36. G. Fruh-Green, D. S. Kelley, S. M. Bernasconi, et al., “30000 Years of Hydrothermal Activity at the Lost City Vent Field,” Science 301, 495–498 (2003).

    Article  Google Scholar 

  37. D. V. Grichuk, “Thermodynamic Model of Hydrothermal System in Hyperbasites,” in Proceedings of 16th International School of Marine Geology (Moscow, 2005), pp. 272–273 [in Russian].

  38. D. V. Grichuk, Thermodynamic Models of Submarine Hydrothermal Systems (Nauchnyi Mir, Moscow, 2000) [in Russian].

    Google Scholar 

  39. H. C. Helgeson, “Evaluation of Irreversible Reactions in Geochemical Processes Involving Minerals and Aqueous Solutions: I. Thermodynamic Relations,” Geochim. Cosmochim. Acta 32, 569–592 (1968).

    Article  Google Scholar 

  40. H. C. Helgeson, J. Delany, D. K. Bird, “Summary and Critique of the Thermodynamic Properties of Rock-Forming Minerals,” Am. J. Sci. 278A, 1–229 (1978).

    Google Scholar 

  41. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrologic Interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  42. W. Johannes, “Experimental Investigation of the Reaction Forsterite + H2O = Serpentine + Brucite,” Contrib. Mineral. Petrol. 19, 309–315 (1968).

    Article  Google Scholar 

  43. J. A. Karson, “Internal Structure of Oceanic Lithosphere: A Perspective from Tectonic Windows,” in Faulting and Magmatism at Mid-Ocean Ridges, Ed. by W. Buck, P. T. Delaney, J. A. Karson, and Y. Lagabrielle, Geophys. Monogr. 106, 177–218 (1998).

  44. D. S. Kelley and J. R. Delaney, “Two-Phase Separation and Fracturing in Mid-Ocean Ridge Gabbros at Temperatures Greater than 700°C,” Earth Planet. Sci. Lett. 83, 53–66 (1987).

    Article  Google Scholar 

  45. D. S. Kelley, J. A. Karson, D. K. Blackman, et al., “An Off-Axis Hydrothermal Vent Field near Mid-Atlantic Ridge at 30°N,” Nature 412, 145–149 (2001).

    Article  Google Scholar 

  46. D. S. Kelley, J. A. Karson, G. Fruh-Green, et al., “A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field,” Science 307, 1420–1422 (2005).

    Article  Google Scholar 

  47. L. Kump, S. L. Brantley, and M. A. Arthur, “Chemical Weathering, Atmospheric CO2 and Climate,” Earth Planet. Sci. Rev. 28, 611–667 (2000).

    Article  Google Scholar 

  48. A. C. Lasaga, “Transition State Theory,” in Kinetics of Geochemical Processes, Ed. by A. C. Lasaga and R. J. Kirkpatrick, Rev. Mineral. 8, 135–169 (1981).

  49. A. F. Marques, F. J. Barriga, V. Chavagnac, et al., “Mineralogy, Geochemistry and Nd Isotope Composition of the Rainbow Hydrothermal Field, Mid-Atlantic Ridge,” Mineral. Deposita 41, 52–67 (2006).

    Article  Google Scholar 

  50. R. A. Mayanovic, A. J. Anderson, W. A. Bassett, et al., “The Structure of REE Aqua and Chloroaqua Complexes in Hydrothermal Fluids,” in Proceedings of the Goldschmidt Conference, Cologne, Germany, 2007 (Cologne, 2007), A642.

  51. T. M. McCollom and E. Shock, “Fluid-Rock Interactions in the Lower Oceanic Crust: Thermodynamic Models of Hydrothermal Alteration,” J. Geophys. Res. 103(B1), 547–575 (1998).

    Article  Google Scholar 

  52. P. J. Michael, C. H. Langmuir, H. J. B. Dick, et al., “Magmatic and Amagmatic Sea Floor Spreading at the Slowest Mid-Ocean Ridge: Gakkel Ridge, Arctic Ocean,” Nature 423, 956–96 (2003).

    Article  Google Scholar 

  53. M. V. Mironenko, N. N. Akinfiev, and T. Yu. Melikhova, “GEOSHEQ—A Complex of Thermodynamic Modeling of Geochemical Systems,” Vestn. OGGGN RAN 5(15), 96–97 (2000).

    Google Scholar 

  54. M. J. Mottl, “Metabasalts, Axial Hot Springs and the Structure of Hydrothermal Systems at Mid-Ocean Ridges,” Geol. Soc. Amer. Bull. 94, 161 (1983).

    Article  Google Scholar 

  55. P. Nonnotte, G. Ceuleneer, and M. Benoit, “Genesis of Andesitic-Boninitic Magmas at Mid-Ocean Ridges by Melting of Hydrated Peridotites: Geochemical Evidence from DSDP Site 334 Gabbronorites,” Earth Planet. Sci. Lett. 236, 632–653 (2005).

    Article  Google Scholar 

  56. D. S. O’Hanley and F. J. Wicks, “Conditions of Formations of Lizardite, Chrysotile and Antigorite, Cassiar, British Columbia,” Can. Mineral. 33, 753–773 (1995).

    Google Scholar 

  57. O. S. Pokrovsky and J. Schott, “Kinetics and Mechanism of Forsterite Dissolution at 258°C and pH from 1 to 12,” Geochim. Cosmochim. Acta 64, 3313–3325 (2000).

    Article  Google Scholar 

  58. G. Proskurowski, M. D. Lilley, D. S. Kelley, et al., “Low Temperature Volatile Production at the Lost City Hydrothermal Field: Evidence from a Hydrogen Stable Isotope Geothermometer,” Chem. Geol. 229, 331–343 (2006).

    Article  Google Scholar 

  59. Report of 24th Cruise of the R/V Professor Logachev (PMGRE, Lomonosov: 2004).

  60. P. A. Rona, L. Widenfalk, and K. Bostrum, “Serpentinized Ultramafics and Hydrothermal Activity at the Mid-Atlantic Ridge Crest near 15°N,” J. Geophys. Res. 92, 1417–1427 (1987).

    Article  Google Scholar 

  61. M. Rosner, W. Bach, B. Peucker-Ehrenbrink, et al., “Carbonate and Anhydrite Veins from Altered Gabbroic Oceanic Crust (Atlantis Massif, MAR 30°N),” in Proceeding of Goldschmidt Conference Abstracts, Cologne, Germany, 2007 (Cologne, 2007), p. A853.

  62. Z. D. Sharp and J. D. Barnes, “Water-Soluble Chlorides in Massive Seafloor Serpentinites: A Source of Chloride in Subduction Zones,” Earth Planet. Sci. Lett. 226, 243–254 (2004).

    Article  Google Scholar 

  63. Shipboard Scientific Party, Serpentine. Scientific Cruise Report (Iferemer-Centre de Brest, 2007).

  64. “Shipboard Scientific Party. Drilling Mantle Peridotite along the Mid-Atlantic Ridge from 14° to 16°N,” in Ocean Drilling Program. Leg 209 Preliminary Report. Texas A&M University (College Station, TX, USA, 2003), p. 160.

  65. E. Shock, H. C. Helgeson, and D. A. Sverjensky, “Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures: Standard Partial and Molar Properties of Inorganic Neutral Species,” Geochim. Cosmochim. Acta 53, 2157–2183 (1989).

    Article  Google Scholar 

  66. E. Shock, D. C. Sassani, M. Willis, et al., “Inorganic Species in Geologic Fluids: Correlations among Standard Molal Thermodynamic Properties of Aqueous Ions and Hydroxide Complexes,” Geochim. Cosmochim. Acta 61, 907–950 (1997).

    Article  Google Scholar 

  67. P. S. Sidhu, R. J. Gilkes, R. M. Coenell, et al., “Dissolution of Iron Oxides and Oxyhydroxides in Hydrolic and Perhydrolic Acids,” Clays Clay Miner. 29, 269–276 (1981).

    Article  Google Scholar 

  68. S. A. Silantyev and B. V. Belyatskii, “Concentration and Isotopic Composition of Strontium, Lead, and Neodymium in the Mantle Restites of the Mid-Atlantic Ridge and their Relation with Endogenic and Exogenic Factors of the Oceanic Lithosphere,” in Proceedings of 15th Vinogradov Symposium on Isotope Geochemistry (Moscow, 1998), pp. 260–261 [in Russian].

  69. S. A. Silantyev, A. A. Novoselov, M. V. Mironenko, et al., “Geochemical Features and Thermodynamic Modeling of Hydration and Carbonatization of Mantle Peridotites in the Inner Corner Highs of MAR: An Example of 15°04′ N (Bugo Diapir),” in Working Conference of Russian Branch of the InterRidge International Project, St. Petersburg, Russia, 2005 (St. Petersburg, 2005), p. 14 [in Russian].

  70. S. A. Silantyev, A. A. Novoselov, M. V. Mironenko, et al., “Redox Regime of Hydration of the Hess-Type Crust,” in Working Conference of Russian Department of the InterRidge International Project, St. Petersburg, Russia, 2003 (Moscow, 2003), p. 42 [in Russian].

  71. S. Silantyev, E. Krasnova, N. Bortnikov, et al., “Structure of the Oceanic Inner Complexes as Key to the Reconstructing of Magmatic and Tectonic Evolution of the Lithosphere of Slow-Spreading MAR: Evidence from the Atlantic Massif, MAR, 30°N,” in Proceedings of Working Conference of Russian Department of Inter-Ridge International Project on Geochemical, Petrological, and Geophysical Segmentation of MAR and its Relation with Geodynamic Parameters of Accretion of the Oceanic Lithosphere, Moscow, Russia, 2007 (Moscow, 2007), pp. 46–48 [in Russian].

  72. S. A. Silantyev, M. V. Mironenko, B. A. Bazylev, and Yu. V. Semenov, “Metamorphism Related to Hydrothermal Systems of Mid-Ocean ridges; Experience of Thermodynamic Modeling,” Geokhimiya, No. 7, 1015–1034 (1992).

  73. S. A. Silantyev, R. Magakyan, S. K. Zlobin, et al., “New Data on the Structure of the Oceanic Crust of the Central Atlantic, 15°20; Fracture Zone: Preliminary results of 16th Cruise of the R/V Akademik Boris Petrov, Second Stage,” Dokl. Akad. Nauk SSSR 318(1), 172–175 (1991).

    Google Scholar 

  74. S. C. Singh, W. C. Crawford, H. Carton, et al., “Discovery of a Magma Chamber and Faults beneath a Mid-Atlantic Ridge Hydrothermal Field,” Nature. 442, 1029–1032 (2006).

    Article  Google Scholar 

  75. N. H. Sleep, “Thermal Structure and Kinematics of Mid-Ocean Ridge Axes: Some Implications to Basaltic Volcanism,” Geophys. Res. Lett. 5, 426–428 (1978).

    Article  Google Scholar 

  76. J. E. Snow and L. Reisberg, “On Isotopic Systematics of MORB Mantle: Results from Altered Abyssal Peridotites,” Earth Planet. Sci. Lett. 133, 411–421 (1995).

    Article  Google Scholar 

  77. J. E. Thomas, R. St. C. Smart, and W. M. Skinner, “Kinetic Factors for Oxidative and Non-Oxidative Dissolution of Iron Sulfides,” Mineral. Engin. 13, 1149–1159 (2000).

    Article  Google Scholar 

  78. M. K. Tivey, “Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits,” Oceanography 20, 50–65 (2007).

    Google Scholar 

  79. P. Vieillard, S. Ramirez, A. Bouchet, et al., “Alteration of the Callovo-Oxfordian Clay from Meuse-Haute Marne Underground Laboratory (France) by Alkaline Solution: II. Modeling of Mineral Reactions,” Appl. Geochem. 19, 1699–1709 (2004).

    Article  Google Scholar 

  80. I. V. Vikent’ev, Genesis and Metamorphism of Sulfide Ores (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  81. J. Wilson, D. Savage, J. Cuadros, et al., “The Effect of Iron on Montmorillonite Stability: I. Background and Thermodynamic Considerations,” Geochim. Cosmochim. Acta. 70, 306–322 (2006).

    Article  Google Scholar 

  82. R. A. Wogelius and J. V. Walther, “Olivine Dissolution Kinetics at Near-Surface Conditions,” Chem. Geol. 97, 101–112 (1992).

    Article  Google Scholar 

  83. T. J. Wolery and C. F. Jove-Colon, “Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in Dilute Systems,” in Rep. ANL-WIS-GS-000003 REV 00 (U.S. Dep. Energy, Washington, 2004), p. 212.

    Google Scholar 

  84. M. Y. Zolotov and M. V. Mironenko, “Timing of Acid Weathering on Mars: A Kinetic-Thermodynamic Assessment,” J. Geophys. Res. 112, E07006 (2007), doi:10.1029/2006JE002882.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Silantyev.

Additional information

Original Russian Text © S.A. Silantyev, M.V. Mironenko, A.A. Novoselov, 2009, published in Petrologiya, 2009, Vol. 17, No. 2, pp. 154–174.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silantyev, S.A., Mironenko, M.V. & Novoselov, A.A. Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. Modeling phase transitions and material balance: Downwelling limb of a hydrothermal circulation cell. Petrology 17, 138–157 (2009). https://doi.org/10.1134/S0869591109020039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591109020039

Keywords

Navigation