Skip to main content
Log in

Trimetallic Hydrotreating Catalysts CoMoW/Al2O3 and NiMoW/Al2O3 Prepared on the Basis of Mixed Mo-W Heteropolyacid: Difference in Synergistic Effects

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Trimetallic CoMo3W9/Al2O3 catalyst is prepared using the Keggin structure mixed heteropolyacid H4SiMo3W9O40 and cobalt citrate. CoMo12/Al2O3 and CoW12/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, are synthesized as reference samples. Sulfided catalysts are analyzed by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties are investigated in the co-hydrotreatment of dibenzothiophene (DBT) and naphthalene in a flow unit. It is shown that the catalytic activity in both DBT hydrodesulfurization and naphthalene hydrogenation (HYD) decreases in the following sequence: CoMo12/Al2O3 > CoMo3W9/Al2O3 > CoW12/Al2O3, and it correlates with the degree of promotion of active-phase particles by cobalt atoms. A comparison with the published data available for Ni-promoted catalysts makes it possible to reveal the general regularity for bi- and trimetallic Со(Ni)-Mo(W)S catalysts: the use of mixed Mo-W H4SiMo3W9O40 heteropolyacid instead of monometallic H4SiW12O40 causes an increase in the degree of promotion of MoWS2 crystallite edges for the series of catalysts promoted by both cobalt and nickel. The use of nickel as a promoter leads to a higher degree of promotion of edges of active-phase particles in comparison with cobalt; as a result, the NiMo3W9/Al2O3 catalyst is much more active than the CoMo3W9/Al2O3 counterpart. Possible reasons behind the found features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. S. Nikul’shina, A. V. Mozhaev, P. P. Minaev, M. Fournier, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, and P. A. Nikul’shin P.A., Zh. Prikl. Khim. (S.–Peterburg), No. 90, 40 (2017).

  2. A. Stanislaus, A. Marafi, and M. Rana, Catal. Today 153, 1 (2010).

    Article  CAS  Google Scholar 

  3. Y. Okamoto, Bull. Chem. Soc. Jpn. 87, 20 (2014).

    Article  CAS  Google Scholar 

  4. H. Topsoe, B. S. Clausen, N. Topsoe, and E. Pederson, Ind. Eng. Chem. Fundam. 25, 25 (1986).

    Article  Google Scholar 

  5. Y. G. Hur, M.-S. Kim, D.-W. Lee, S. Kim, H.-J. Eom, G. Jeong, M.-H. No, N. S. Nho, and K.-Y. Lee, Fuel 137, 237 (2014).

    Article  CAS  Google Scholar 

  6. J. A. Tavizon-Pozos, V. A. Suarez-Toriello, J. A. Reyes, A. Guevara-Lara, B. Pawelec, J. L. G. Fierro, M. Vrinat, and C. Geantet, Topics in Catal. 59, 241 (2016).

    Article  CAS  Google Scholar 

  7. T. Alphazan, A. Bonduelle-Skrzypczak, C. Legens, Z. Boudene, A.-L. Taleb, A. -S. Gay, O. Ersen, C. Coperet, and P. Raybaud, J. Catal. 340, 60 (2016).

    Article  CAS  Google Scholar 

  8. D. D. Whitehurst, T. Isoda, and I. Mochida, Adv. Catal. 42, 345 (1998).

    CAS  Google Scholar 

  9. R. Prins, V. H. J. de Beer, and G. A. Somorjai, Catal. Rev., Sci. Eng. 31, 1 (1989).

    Article  CAS  Google Scholar 

  10. S. Eijsbouts, Appl. Catal., A 158, 53 (1997).

  11. Y. Okamoto, M. Kawano, T. Kawabata, T. Kubota, and I. Hiromitsu, J. Phys. Chem. B 109, 288 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. F. Besenbacher, M. Brorson, B. S. Clausen, S. Helveg, B. Hinnemann, J. Kibsgaard, J. V. Lauritsen, P. G. Moses, J. K. Norskov, and H. Topsoe, Catal. Today 130, 86 (2008).

    Article  CAS  Google Scholar 

  13. M. J. Vissenberg, Y. van der Meer, E. J. M. Hensen, V. H. J. de Beer, A. M. van der Kraan, R. A. van Santen, and J. A. R. van Veen, J. Catal. 198, 151 (2001).

    Article  CAS  Google Scholar 

  14. L. Coulier, G. Kishan, J. A. R. van Veen, and J. W. Niemantsverdriet, J. Phys. Chem. B 106, 5897 (2002).

    Article  CAS  Google Scholar 

  15. R. Obeso-Estrella, J. L. G. Fierro, J. N. Diaz De Leon, S. Fuentes, G. Alonso-Nunez, E. Lugo-Medina, B. Pawelec., and T. A. Zepeda, Fuel 233, 644 (2018).

    Article  CAS  Google Scholar 

  16. R. Huirache-Acuna, B. Pawelec, E. M. Rivera-Munoz, R. Guil-Lopez, and J. L. G. Fierro, Fuel 198, 145 (2017).

    Article  CAS  Google Scholar 

  17. Y. E. Licea, R. Grau-Crespo, L. A. Palacio, and Jr. A. C. Faro, Catal. Today 292, 84 (2017).

    Article  CAS  Google Scholar 

  18. G. Kishan, L. Coulier, J. A. R. van Veen, and J. W. Niemantsverdriet, J. Catal. 200, 194 (2001).

    Article  CAS  Google Scholar 

  19. N. Rinaldi, T. Kubota, and Y. Okamoto, Appl. Catal., A 374, 228 (2010).

  20. V. M. Kogan, P. A. Nikul’shin, V. S. Dorokhov, E. A. Permyakov, A. V. Mozhaev, D. I. Ishutenko, O. L. Eliseev, N. N. Rozhdestvenskaya, and A. L. Lapidus, Izv. Akad. Nauk, Ser. Khim., No. 2, 332 (2014).

  21. J. A. Mendoza-Nieto, O. Vera-Vallejo, L. Escobar-Alarcon, D. A. Solis-Casados, and T. Klimova, Fuel 110, 268 (2013).

    Article  CAS  Google Scholar 

  22. S. Sigurdson, V. Sundaramurthy, A. K. Dalai, and J. Adjaye, J. Mol. Catal. A: Chemical 291, 30 (2008).

    Article  CAS  Google Scholar 

  23. C. Tomazeau, C. Geantet, M. Lacroix, M. Danot, V. Harle, and P. Raybaud, Appl. Catal., A 322, 92 (2007).

  24. H. Yu, S. Li, and G. Jin, Energy Fuels 24, 4419 (2010).

    Article  CAS  Google Scholar 

  25. D. Liu, L. Liu, G. Li, and C. Liu, J. Nat. Gas Chem. 19, 530 (2010).

    Article  CAS  Google Scholar 

  26. R. Huirache-Acuna, B. Pawelec, E. Rivera-Munoz, R. Nava, J. Espino, and J. L. G. Fierro, Appl. Catal., B 92, 168 (2009).

    Article  CAS  Google Scholar 

  27. M. E. Cervantes-Gaxiola, M. Arroyo-Albiter, A. Perez-Larios, P. B. Balbuena, and J. Espino-Valencia, Fuel 113, 733 (2013).

    Article  CAS  Google Scholar 

  28. M. S. Nikul’shina, A. V. Mozhaev, P. P. Minaev, M. Fournier, C. Lancelot, P. Blanchard, E. Payen, C. Lamonier, and P. A. Nikul’shin, Kinet. Katal., No. 6, 789 (2017).

  29. M. S. Nikulshina, A. Mozhaev, C. Lancelot, M. Marinova, P. Blanchard, E. Payen, C. Lamonier, and P. Nikulshin, Appl. Catal., B 224, 951 (2018).

    Article  CAS  Google Scholar 

  30. S. L. Amaya, G. Alonso-Nunez, T. A. Zepeda, S. Fuentes, and A. Echavarria, Appl. Catal., B 148–149, 221 (2014).

  31. R. Huirache-Acuna, T. A. Zepeda, E. M. Rivera-Munoz, R. Nava, C. V. Loricera, and B. Pawelec, Fuel 149, 149 (2015).

    Article  CAS  Google Scholar 

  32. C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot, Inorg. Chem. 22, 207 (1983).

    Article  CAS  Google Scholar 

  33. G. Herv and A. Teze, Inorg. Chem. 16, 2115 (1977).

    Article  Google Scholar 

  34. C. Sanchez, J. Livage, J. P. Launay, M. Fournier, and Y. Jeannin, J. Am. Chem. Soc. 104, 3194 (1982).

    Article  CAS  Google Scholar 

  35. A. V. Mozhaev, P. A. Nikulshin, Al. A. Pimerzin, K. I. Maslakov, and A. A. Pimerzin, Catal. Today 271, 80 (2016).

    Article  CAS  Google Scholar 

  36. P. A. Nikulshin, A. V. Mozhaev, K. I. Maslakov, A. A. Pimerzin, and V. M. Kogan, Appl. Catal., B 158–159, 161 (2014).

  37. P. P. Minaev, P. A. Nikulshin, M. S. Kulikova, A. A. Pimerzin, and V. M. Kogan, Appl. Catal., A 505, 456 (2015).

  38. S. Kasztelan, H. Toulhoat, J. Grimblot, and J. P. Bonnelle, Appl. Catal. 13, 1279 (1984)

    Article  Google Scholar 

  39. H. Toulhoat and P. Raybaud, IFP Energies nouvelles 68, 832 (2013).

  40. T. Kubota, N. Miyamoto, M. Yoshioka, and Y. Okamoto, Appl. Catal., A 480, 10 (2014).

  41. M. Sun, A. E. Nelson, and J. Adjaye, J. Catal. 226, 41 (2004).

    Article  CAS  Google Scholar 

  42. H. Schweiger, P. Raybaud, and H. Toulhoat, J. Catal. 212, 33 (2002).

    Article  CAS  Google Scholar 

  43. M. Sun, A. E. Nelson, and J. Adjaye, J. Catal. 226, 32 (2004).

    Article  CAS  Google Scholar 

  44. D. Wyrzykoiwski and L. Chmuirzynski, J. Therm. Anal. Calorim. 102, 61 (2010). J. Therm. Anal. Calorim.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 14.586.21.0054 (unique project identifier RFMEFI58617X0054). This work was carried out using equipment of the Center for Collective Use Study of Physicochemical Properties of Substances and Materials, Samara State Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Nikul’shin.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhaev, A.V., Nikul’shina, M.S., Lancelot, C. et al. Trimetallic Hydrotreating Catalysts CoMoW/Al2O3 and NiMoW/Al2O3 Prepared on the Basis of Mixed Mo-W Heteropolyacid: Difference in Synergistic Effects. Pet. Chem. 58, 1198–1205 (2018). https://doi.org/10.1134/S0965544118140104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118140104

Keywords:

Navigation