Skip to main content
Log in

Degree-based entropy of molecular structure of hyaluronic acid–curcumin conjugates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 13 August 2021

This article has been updated

Abstract

The graph entropy is an important quantity of information theory. It measures the structural information of chemical graphs and complex networks. The graph entropy measures have specific chemical applications in discrete mathematics, biology and chemistry. The main contribution of this paper is to study properties of graph entropies and then goes on to discuss the structure of hyaluronic acid (HA)–curcumin conjugates. Also we compute entropies of this structure by using certain degree-based topological indices with the help of information function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. W. Gao, H. Wu, M.K. Siddiqui, A.Q. Baig, Study of biological networks using graph theory. Saudi J. Biol. Sci. 25, 1212–1219 (2018)

    Article  Google Scholar 

  2. W. Wu, C. Zhang, W. Lin, Q. Chen, X. Guo, Y. Qian, Quantitative structure-property relationship (QSPR) modeling of drug-loaded polymeric micelles via genetic function approximation. PLoS ONE 10(3), 119–129 (2015)

    Google Scholar 

  3. Y.M. Chu, A. Khalid, S.F. Khan, M.K. Siddiqui, M.H. Muhammad, On Zagreb-type molecular descriptors of vanadium carbide and their applications. Eur. Phys. J. Plus 135(10), 1–18 (2020)

    Article  Google Scholar 

  4. A.J.M. Khalaf, M.F. Hanif, M.K. Siddiqui, M.R. Farahani, On degree based topological indices of bridge graphs. J. Discrete Math. Sci. Cryptogr. 23(6), 1139–1156 (2020)

    Article  MathSciNet  Google Scholar 

  5. Y.M. Chu, S. Javed, M. Javaid, M.K. Siddiqui, On bounds for topological descriptors of-sum graphs. J. Taibah Univ. Sci. 14(1), 1288–1301 (2020)

    Article  Google Scholar 

  6. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  7. M.K. Siddiqui, M. Naeem, N.A. Rahman, M. Imran, Computing topological indices of certain networks. J. Optoelectron. Adv. Mater. 18(9–10), 884–892 (2016)

    Google Scholar 

  8. W. Gao, M.K. Siddiqui, M. Naeem, N.A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures. Molecules 22, 1496–1507 (2017)

    Article  Google Scholar 

  9. M. Imran, M.K. Siddiqui, M. Naeem, M.A. Iqbal, On topological properties of symmetric chemical structures. Symmetry 10(173), 1–21 (2018)

    Google Scholar 

  10. Z. Raza, The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains. Heliyon 6(7), 44–54 (2020)

    Article  Google Scholar 

  11. A. Ali, Z. Raza, A.A. Bhatti, Some vertex-degree-based topological indices of cacti. Ars Combinatoria 144, 195–206 (2019)

    MathSciNet  MATH  Google Scholar 

  12. W. Gao, M.R. Farahani, Degree-based indices computation for special chemical molecular structures using edge dividing method. Appl. Math. Nonlinear Sci. 1(1), 94–117 (2016)

    MathSciNet  MATH  Google Scholar 

  13. M.K. Siddiqui, M. Imran, A. Ahmad, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers. Appl. Math. Comput. 280, 132–139 (2016)

    MathSciNet  MATH  Google Scholar 

  14. N. Rashevsky, Life, information theory and topology. Bull. Math. Biophys. 17, 229–235 (1955)

    Article  MathSciNet  Google Scholar 

  15. M. Dehmer, M. Graber, The discrimination power of molecular identification numbers revisited. Match Commun. Math. Comput. Chem. 69, 785–794 (2013)

    MATH  Google Scholar 

  16. R.E. Ulanowicz, Quantitative methods for ecological network analysis. Comput. Biol. Chem. 28, 321–339 (2004)

    Article  MATH  Google Scholar 

  17. A. Mowshowitz, M. Dehmer, Entropy and the complexity of graphs revisited. Entropy 14, 559–570 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Dehmer, Information processing in complex networks: graph entropy and information functionals. Appl. Math. Comput. 201(1–2), 82–94 (2008)

    MathSciNet  MATH  Google Scholar 

  19. M. Dehmer, L. Sivakumar, K. Varmuza, Uniquely discriminating molecular structures using novel eigenvalue-based descriptors. Match Commun. Math. Comput. Chem. 67, 147–172 (2012)

    MathSciNet  Google Scholar 

  20. H. Morowitz, Some order-disorder considerations in living systems. Bull. Math. Biophys. 17, 81–86 (1955)

    Article  Google Scholar 

  21. H. Quastler, Information theory in biology. Bull. Math. Biol. 8, 183–185 (1954)

    Google Scholar 

  22. D. Bonchev, Complexity in Chemistry, introduction and fundamentals, 7th edn. (Taylor and Francis, Boca Raton, 2003), pp. 157–189

    Book  MATH  Google Scholar 

  23. R.V. Sol, S.I. Valverde, Information theory of complex networks: on evolution and architectural constraints. Complex Netw. Lecture Notes Phys. 650, 189–207 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. E. Trucco, A note on the information content of graphs. Bull. Math. Biol. 18(2), 129–135 (1956)

    MathSciNet  Google Scholar 

  25. M. Dehmer, A. Mowshowitz, A history of graph entropy measures. Inf. Sci. 181, 57–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.J. Tan, J. Wu, Network structure entropy and its application to scale-free networks. Syst. Eng. Theory Pract. 6, 1–13 (2004)

    Google Scholar 

  27. S. Manzoor, M.K. Siddiqui, S. Ahmad, On entropy measures of molecular graphs using topological indices. Arab. J. Chem. 13(8), 6285–6298 (2020)

    Article  Google Scholar 

  28. M. Naeem, M.K. Siddiqui, S. Qaisar, M. Imran, M.R. Farahani, Computing topological indices of 2-dimensional silicon-carbons. UPB Sci. Bull. Ser. B 80, 115–136 (2018)

    Google Scholar 

  29. S.M. Kang, M.K. Siddiqui, N.A. Rehman, M. Naeem, M.H. Muhammad, Topological properties of 2-dimensional silicon-carbons. IEEE Access 6, 59362–59373 (2018)

    Article  Google Scholar 

  30. H. Yang, M. Imran, S. Akhter, Z. Iqbal, M.K. Siddiqui, On Distance-Based Topological Descriptors of Subdivision Vertex-Edge Join of Three Graphs. IEEE ACCESS 7(1), 143381–143391 (2019)

    Article  Google Scholar 

  31. Z. Chen, M. Dehmer, Y. Shi, A note on distance based graph entropies. Entropy 16, 5416–5427 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Fajtlowicz, On conjectures of graffiti-II. Congr. Numer 60, 187–197 (1987)

    MathSciNet  MATH  Google Scholar 

  33. P. Ali, S.A.K. Kirmani, I. Al Rugaie, F. Azam, Degree-based topological indices and polynomials of hyaluronic acid-curcumin conjugates. J. Saudi Pharm. Soc. 28(9), 1093–1100 (2020)

    Article  Google Scholar 

  34. C. Underhill, CD44: the hyaluronan receptor. J. Cell Sci. 103, 293–298 (1992)

    Article  Google Scholar 

  35. A. Fallacara, E. Baldini, S. Manfredini, S. Vertuani, Hyaluronic acid in the third millennium. Polymers (Basel) 10, 701–715 (2018)

    Article  Google Scholar 

  36. E. Ahmadian, S.M. Dizaj, A. Eftekhari, E. Dalir, P. Vahedi, A. Hasanzadeh, M. Samiei, The potential applications of hyaluronic acid hydrogels in biomedicine. Drug Res. 70(01), 6–11 (2019)

    Google Scholar 

  37. M. Swierczewska, H.S. Han, K. Kim, J.H. Park, S. Lee, Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv. Drug Deliv. Rev. 99, 70–84 (2016)

    Article  Google Scholar 

  38. Z. Luo, Y. Dai, H. Gao, Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 9(6), 1099–1112 (2019)

    Article  Google Scholar 

  39. P. Cameron, T. Voller, J. Phadnis, Articular defects and their management. Clin. Orthop. Relat. Res. 391, 328–336 (2020)

    Google Scholar 

  40. R.C. Gupta, R. Lall, A. Srivastava, A. Sinha, Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 6, 192–204 (2019)

    Article  Google Scholar 

  41. S. Manju, K. Sreenivasan, Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J. Colloid Interface Sci. 359, 318–325 (2011)

    Article  ADS  Google Scholar 

  42. G. Tripodo, A. Trapani, M.L. Torre, G. Giammona, G. Trapani, D. Mandracchia, Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur. J. Pharm. Biopharm. 97, 400–416 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Manzoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, S., Siddiqui, M.K. & Ahmad, S. Degree-based entropy of molecular structure of hyaluronic acid–curcumin conjugates. Eur. Phys. J. Plus 136, 15 (2021). https://doi.org/10.1140/epjp/s13360-020-00976-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00976-7

Navigation