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Abstract 34 

We here present the new GLODAP version 2 (GLODAPv2) mapped climatology, which is 35 

based on data from all ocean basins up to and including 2013. In contrast to its predecessor, 36 

GLODAPv1.1, this climatology also covers the Arctic Ocean and Mediterranean Sea. The 37 

quality controlled and internally consistent data product files of GLODAPv2 (Olsen et al., 38 

2015; Key et al., 2015) were used to create global 1ºx1º mapped climatologies of total 39 

dissolved inorganic carbon, total alkalinity, and pH using the Data-Interpolating Variational 40 

Analysis (DIVA) mapping method. Climatologies were created for 33 standard pressure 41 

surfaces. To minimize the risk of translating temporal variability in the input data to spatial 42 

variations in the mapped climatologies, layers with pressures of 1000 dbar, or less, were 43 

mapped for two different time periods: 1986-1999 and 2000-2013, roughly corresponding to 44 

the “WOCE” and “CLIVAR” eras of global ocean surveys. All data from the 1972-2013 45 

period were used in the mapping of pressures higher than 1000 dbar. In addition to the marine 46 

CO2 chemistry parameters listed above, nitrate, phosphate, silicate, oxygen, salinity and theta 47 

were also mapped using DIVA. For these parameters all data from the full 1972-2013 period 48 

were used on all 33 surfaces. The GLODAPv2 global 1ºx1º mapped climatologies, including 49 

error fields and ancillary information have been made available at the GLODAPv2 web page 50 

at the Carbon Dioxide Information Analysis Center (CDIAC, 51 

http://cdiac.ornl.gov/oceans/GLODAPv2/). 52 

 53 

1 Introduction 54 

 Accurate estimates of recent changes in the ocean carbon cycle, including how these 55 

changes will influence climate, requires high quality data. The fully quality controlled and 56 

internally consistent Global Ocean Data Analysis Project (GLODAPv1.1, Key et al., 2004) 57 

has for the past decade been the only global interior ocean carbon data product available. 58 

GLODAPv1.1 has been and continues to be of immense value to the ocean scientific 59 

community, which is reflected in the almost 500 scientific studies that have used and cited 60 

GLODAPv1.1 so far. GLODAPv1.1 has been used most prominently for calculation of the 61 

global ocean inventory for anthropogenic CO2 by e.g. Sabine et al. (2004) and for validation 62 

of global biogeochemical or earth system models by e.g. Bopp et al. (2013).  63 

 The GLODAPv1.1 data product is dominated by data from the World Ocean 64 

Circulation Experiment (WOCE) survey of the 1990s, but contains data from the entire period 65 
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1972-1999, though very few data north of 60ºN in the Atlantic and no data in the Arctic 66 

Ocean or Mediterranean Sea. Many more seawater CO2 chemistry data have been collected at 67 

research cruises after 1999, particularly within the framework of the global repeat 68 

hydrography program CLIVAR/GO-SHIP (Feely et al., 2014; Talley et al. 2016) so that 69 

significantly more interior ocean carbon data exists today than was available in 2004.  70 

 In response to the shortcomings of GLODAPv1.1 and to include more recent data, the 71 

updated and expanded version GLODAPv2 (Key et al., 2015; Olsen et al., 2015), has been 72 

developed. This new data product combines GLODAPv1.1 with data from the two recent 73 

regional synthesis products: Carbon in Atlantic Ocean (CARINA, Key et al., 2010); and 74 

Pacific Ocean Interior Carbon (PACIFICA, Suzuki et al., 2013). In addition, data from 168 75 

cruises not previously included in any of these data products—both new and historical—have 76 

been included. Notably, 116 cruises in GLODAPv2 cover the Arctic Mediterranean Seas, i.e., 77 

the Arctic Ocean and the Nordic Seas (>65ºN).  GLODAPv2 data are available in three forms: 78 

as original, unadjusted data from each cruise in WOCE exchange format files; as a merged 79 

and calibrated data product, where adjustments have been applied to minimize measurement 80 

biases and several calculated data have been added to complete the data coverage; and as a 81 

mapped climatology. This paper presents the methods used for creating the mapped 82 

climatology and its main features, while the assembly of the data and construction of the 83 

product, including the broad features and output of the secondary quality control are described 84 

by Olsen et al. (2015).  85 

 As opposed to a gridded data product, which e.g. the Surface Ocean CO2 Atlas (Pfeil 86 

et al., 2013; Bakker et al., 2014) provides (Sabine et al., 2013), we have created mapped 87 

climatologies. The difference is that gridded data are observations projected onto a grid, using 88 

some form of binning and averaging, but no interpolation or other form of calculation is used 89 

to fill gaps in the observational record. In mapped data the gaps have been filled, in the case 90 

of GLODAPv2 using an objective mathematical method. The method used to create the 91 

mapped climatologies from the merged and calibrated data product is presented in Section 92 

2.2. Some of the resulting data fields and their associated error estimates are shown in Section 93 

3 to highlight important features in the data product; and finally some recommendations for 94 

use and interpretation are given in Section 4. 95 

 96 

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2015-43, 2016

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Published: 19 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 4

2 Methods 97 

2.1 Input data  98 

 The input data for the GLODAPv2 mapped climatology consisted of the bias corrected 99 

and merged data product from GLODAPv2 (Olsen et al., 2015). Whereas the complete data 100 

product contain many variables, we mapped the GLODAPv2 primary biogeochemical 101 

variables (Olsen et al., 2015): total dissolved inorganic carbon (TCO2), total alkalinity (TAlk), 102 

pH, saturation state of calcite and aragonite (ΩC and ΩA), nitrate (NO3
-), phosphate (PO4

3-), 103 

silicate (Si), dissolved oxygen (O2), salinity, and potential temperature, where the latter two 104 

variables are to be used as a reference for the biogeochemical variables. The GLODAPv2 data 105 

product includes vertically interpolated data for the nutrients, oxygen and salinity if any of 106 

those were missing from a bottle data-point, and calculated seawater CO2 chemistry data 107 

whenever pairs of measured CO2 chemistry parameters were available (Olsen et al., 2015). 108 

These were all included in the mapping. The following pre-mapping data treatments were 109 

carried out:   110 

1. ΩC and ΩA were calculated from the TCO2 and TAlk pair at in situ temperature and 111 

pressure using the MATLAB version (van Heuven et al., 2009) of CO2SYS (Lewis 112 

and Wallace, 1998). We used pressure, temperature, salinity, phosphate, and silicate 113 

from the GLODAPv2 data product, the dissociation constants of Lueker et al. (2000) 114 

for carbonate, Dickson (1990) for sulphate, and the total borate concentration of 115 

Uppstrom (1974). 116 

2. All data were vertically interpolated onto 33 surfaces: 0, 10, 20, 30, 50, 75, 100, 125, 117 

150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 118 

1750, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500 dbar. The interpolation was 119 

done station by station, using a cubic hermite spline function. This interpolation 120 

method is quite robust, but can give unreliable results in a few unusual circumstances. 121 

Consequently, if this interpolation gave values more than 1% different from those 122 

produced using a simple linear vertical interpolation the linear results were used. We 123 

used the maximum distance criteria specified in Table 1 to avoid interpolation over 124 

excessive vertical distances between data points. These maximum distance criteria are 125 

similar to those used by Key et al. (2004) for GLODAPv1.1. Note that the 126 

GLODAPv2 climatologies cover 33 pressure surfaces, which is slightly different from 127 
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the depth surfaces, originally chosen by Levitus and Boyer (1994), used in 128 

GLODAPv1.1.   129 

3. The vertically interpolated data for each pressure surface were then gridded by bin-130 

averaging all data in each 1ºx1º grid cell. The mapped climatologies are thus based on 131 

gridded data. We do this because the repeat hydrography program means that there are 132 

several transects in the ocean that have observations at the same points in space at 133 

different points in time.  134 

4. GLODAPv2 includes data for the 42 year period 1972-2013 and in this time frame 135 

there have been significant changes in pH, TCO2, and the saturation states, due to 136 

increasing atmospheric levels of CO2 (e.g. Orr et al., 2001; Lauvset et al., 2015; 137 

Sabine and Tanhua, 2010).  Therefore the upper ocean data, here defined as pressure 138 

less than, or equal to, 1000 dbar, were separated into two time periods for TCO2, pH, 139 

ΩC, and ΩA: 1986-1999 and 2000-2013, roughly corresponding to the WOCE and 140 

CLIVAR eras of global hydrography programs. These were then mapped separately to 141 

reduce the risk of transforming time trends into spatial variations in the mapped 142 

climatologies. No additional corrections were used to account for the seasonal cycle or 143 

potential bias due to uneven temporal sampling. Below 1000 dbar, and for all other 144 

mapped parameters, all available data from 1972-2013 were used in the mapping. The 145 

inherent assumption is that the change in dissolved inorganic carbon and pH below 146 

1000 dbar is negligible. This assumption is further discussed in Section 4.  147 

2.2 Mapping method 148 

 The Data-Interpolating Variational Analysis (DIVA) mapping method (Beckers et al., 149 

2014; Troupin et al., 2012) was used to create the mapped climatologies. DIVA is the 150 

implementation of the Variational Inverse Method (VIM) of mapping discrete, spatially 151 

varying data. A major difference between this and the Optimal Interpolation (OI) method used 152 

in GLODAPv1.1 is how topography is handled. DIVA takes the presence of the seabed and 153 

land into account during the mapping and gives better results in coastal areas and around 154 

islands. In addition, the entire global ocean can be mapped at once, e.g, DIVA does not 155 

propagate information across narrow land barriers such as the Panama isthmus so there is no 156 

need to split the data into ocean regions which are then stitched together to form a global map. 157 

Hence, each climatology is a global analysis for the range 180ºW to 180ºE with a 1ºx1º 158 

resolution. To ensure that the analysis converges on the boundaries, i.e. the dateline and the 159 
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North Pole, the input data were duplicated for 10º on either side of the dateline and for every 160 

30º in a circle around the North Pole (i.e., north of 82.5ºN data in the longitude band 0-30º 161 

were duplicated into the 30-60º and so on), before mapping. This removes most 162 

discontinuities along these boundaries, but in some cases discontinuities still appear along the 163 

North Pole boundary, most notably in the top 125 dbar in the 2000-2013 climatology for 164 

TCO2. Note that this approach creates an artificially large amount of data in the Arctic Ocean, 165 

but the spatial patterns in the observations are retained. 166 

 Apart from the data, the most important DIVA input parameters are the spatial 167 

correlation length scale (CL) and the data signal-to-noise ratio (SNR). The CL defines the 168 

characteristic distance over which a data point influences its neighbors. For GLODAPv2 this 169 

was defined a priori as 7º for all parameters, except for TCO2 and pH. In latitude this 170 

approximately matches the 750 km north-south CL used for the GLODAPv1.1 mapped 171 

climatologies, but is in longitude much smaller than the 1500 km east-west CL used for 172 

GLODAPv1.1. For TCO2, pH, ΩC, and ΩA a CL of 10º was used for the two time periods in 173 

the top 1000 dbar, and 7º in the deep ocean. This was required because separating these 174 

parameters into two time periods significantly reduced the data density (Figure 1), and the 175 

smaller CL led to gaps in the climatology. Since the oceans generally tend to mix easier 176 

zonally than meridionally, a pseudo-velocity field and advection constraint was used such that 177 

the correlation becomes stronger in the east-west direction even though the input CL is the 178 

same for both directions (see the DIVA user manual available at 179 

http://modb.oce.ulg.ac.be/mediawiki/index.php/Diva_documents for details). Setting the CL 180 

is partly a subjective effort, aiming to strike the optimal balance between large values, which 181 

tends to smooth the data fields and reduce mapping errors, and small values, which leads to 182 

more correct rendering of fronts and other features. We also want to stay within the physical 183 

constraints set by ocean dynamics and natural spatial variability. It is possible to optimize CL 184 

in DIVA, but this works well only when the data density is reasonably high. The sparse global 185 

data distribution in GLODAPv2 gives optimized CL in the order of 25º. Doing a cruise-by-186 

cruise analysis following Jones et al. (2012) to get spatially varying CL is possible, but would 187 

leave large gaps. For GLODAPv2 it was therefore decided to use a globally uniform a priori 188 

choice since this is the most transparent and easily reproducible.  189 

 The SNR defines how representative the observations are for the climatological state. 190 

For spatially varying data sets like GLODAPv2, it is the assumed ratio of climatological 191 

spatial variability (“signal”) to the short term variability (“noise”) in the data. For the 192 
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 7

GLODAPv2 mapped climatologies the SNR was defined a priori to be 10 (i.e. the noise is 193 

10% of the signal), following Key et al. (2004). To understand the importance of SNR, and 194 

the reason for a subjective a priori choice, a brief discussion of the differences between 195 

interpolation and approximation/analysis is necessary. When interpolating between points in a 196 

data set, gaps between data points are filled but the existing points are not replaced. When 197 

approximating, a function, e.g. a regression line, is applied that describes the original data 198 

points to some degree. The resulting approximated data set has new values at every point and 199 

is smoother than the interpolated data set. None of the approximated data points exactly match 200 

the original ones, and that assumes more uncertainty – or non-climatological variability – in 201 

the data. In the case of very high SNR, the observed values are retained in the mapped 202 

climatology and DIVA interpolates between them, while smaller values allow for larger 203 

deviations from these and an increasingly smooth climatology.  204 

 Working with real world observations, we know that the observations are indeed 205 

affected by shorter term variations and in addition have uncertainties associated with them. 206 

They do not represent the “true” climatological value. For this reason the SNR should always 207 

be kept quite small when making mapped climatologies, but this needs to be balanced by the 208 

need to keep the error estimates reasonable. The lower the SNR the further the approximation 209 

is allowed to deviate to be from the original data and the higher the error associated with the 210 

approximation becomes. The SNR can be calculated from observations using generalized 211 

cross validation, but for GLODAPv2 such calculations give very high SNR (in the order of 212 

100). This is maybe not completely unreasonable, since GLODAPv2 has been carefully 213 

quality controlled and we have high confidence that the measurement uncertainties are small. 214 

Using gridded data covering 14 years as input also means that the input is reasonably 215 

representative relative to the climatology. However, both increasing the SNR and increasing 216 

the CL will decrease the error estimates, because this assumes small representativity errors 217 

(i.e. that what is observed is the true climatology) and a large circle of influence. If those 218 

assumptions are wrong the errors will be significantly underestimated. Therefore, even with a 219 

high confidence that the input data are climatologically representative the mapping errors are 220 

likely to be underestimated if we use the SNR calculated from general cross validation.  221 

 A DIVA analysis is created by minimizing a cost function which is defined by the 222 

difference between observations and analysis; the smoothness of the analysis; and the 223 

physical laws of the ocean (Troupin et al., 2012). The result is thus the analysis with the 224 

smallest global mean error, but determining the spatial distribution of errors is important. In 225 
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DIVA this is non-trivial as, in contrast to OI, the real covariance function, which is necessary 226 

to obtain spatial error fields, is not formulated explicitly, but is instead the result of a 227 

numerical determination (Troupin et al., 2012). Determining the real covariance to get error 228 

estimates is the most exact method, but is computationally expensive. There are several error 229 

estimation methods implemented in DIVA, from the very simple to the very exact (Troupin et 230 

al., 2012, Beckers et al., 2014) and for GLODAPv2 the error fields are based on the “almost 231 

exact error calculation”. This method calculates the exact error, using real covariances, in a 232 

few locations and then uses DIVA to interpolate between them. While not tested for all 233 

climatologies due to the significant computational cost, the almost exact errors generally only 234 

differ significantly from the exact error in regions where the data fields have very high errors, 235 

which only happens in coastal areas and in areas with no data. Since a mask removing the 236 

result in all grid cells where the mapping error exceeds one standard deviation in the input 237 

data (on a given pressure surface) have been applied to the mapped climatologies, the almost 238 

exact errors are considered equivalent to the real covariance errors.  239 

 240 

3 Results 241 

3.1 Data fields 242 

 The mapped climatologies are available as one netcdf files per parameter from CDIAC 243 

(http://cdiac.ornl.gov/oceans/GLODAPv2/). Each of these contain the global 1ºx1º 244 

climatology, the associated error fields, and the gridded input data (Table 2) for the parameter 245 

in question. The files containing TCO2, pH, ΩC, and ΩA are four-dimensional due to the two 246 

different time periods (1986-1999 and 2000-2013) for the top 1000 dbar. For all surfaces 247 

below 1000 dbar (i.e. surfaces 20-33) the TCO2, pH, ΩC, and ΩA climatologies are identical 248 

for both time periods. The fields for the other parameters are three-dimensional, since the full 249 

time period 1972-2013 was used in the mapping.  250 

 Figures 2-4 show the mapped climatologies for TCO2, TAlk, and nitrate, respectively, 251 

at two different pressure surfaces. These all show the spatial patterns expected from biological 252 

dynamics, global ocean salinity, and large-scale circulation. Figures 5-7 show, for the same 253 

parameters and pressure surfaces, the difference between the gridded input and the mapped 254 

climatologies, which is relatively large and variable near the surface and generally within the 255 

data uncertainties in the deep ocean. Figures 8-10 show the error fields associated with the 256 

climatologies shown in Figures 2-4. There are large differences in spatial data coverage 257 
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between the 1986-1999 and the 2000-2013 periods (Figure 1), which affect the error estimates 258 

for the top 1000 dbar (Figure 8). The 1986-1999 period (Figure 1a) has no data in the 259 

Caribbean and Mediterranean Seas, and whereas the 2000-2013 period (Figure 1b) has data in 260 

those regions it lacks coverage in the Indian Ocean and has lower data density in the Pacific 261 

Ocean. The spatial variability in mapping errors is a function of the observational network, 262 

and further study of this variability would be of great use in optimizing the existing and future 263 

observational networks. The biggest improvement in GLODAPv2 compared to GLODAPv1.1 264 

is that the former includes the Arctic Ocean and Mediterranean Sea which was missing in 265 

GLODAPv1.1 due to a near total absence of data from these regions.       266 

3.2 Error fields 267 

 While the mapping error reflects the data distribution and the choice of input variables 268 

(i.e. CL and SNR), it represents only the errors due to the mathematical mapping of the input 269 

data, and does not take into account all the uncertainty in the input data (although some of this 270 

uncertainty is assumed in the choice of SNR). For details regarding the accuracy and precision 271 

of the GLODAPv2 discrete data the reader is referred to Olsen et al., (2015), but note that 272 

these uncertainties in the input data overall are smaller than the mapping errors. Overall the 273 

spatial error distribution is as expected: relatively small where there are observations and 274 

larger elsewhere. In regions without data the mapping errors may approach, and sometimes 275 

exceed, the climatological value. In these regions the climatology cannot be trusted, and 276 

therefore all grid cells where the mapping error exceeds one standard deviation of the input 277 

data on a given pressure surface have been masked (i.e. set to -999). This still leaves regions 278 

with high mapping errors, so the relative error fields (i.e. error scaled to the standard deviation 279 

in the data) are provided in the netcdf files making it possible for the user to create alternative 280 

masks if needed. For TCO2 the average error in the masked data across all surfaces is in the 281 

range 14-27 µmol kg-1; for TAlk in the range 8-29 µmol kg-1; for pH at standard temperature 282 

and pressure in the range 0.016-0.056; for pH at in situ temperature and pressure in the range 283 

0.011-0.042; for ΩC at in situ temperature and pressure in the range 0.029-0.46; for ΩA at in 284 

situ temperature and pressure in the range 0.020-0.31; for nitrate in the range 1.5-2.4 µmol kg-285 
1; for phosphate in the range 0.10-0.17 µmol kg-1; for silicate in the range 4-13 µmol kg-1; for 286 

oxygen in the range 10-19 µmol kg-1; for salinity in the range 0.02-0.48; and for potential 287 

temperature in the range 0.19-2.5 ºC. The ranges reflect the variability in data density on 288 
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different surfaces and also the larger variability in surface ocean observations, because this 289 

leads to larger background variance in the input data. 290 

 The TCO2 and TAlk mapping errors for our GLODAPv2 climatology have been 291 

compared with those of GLODAPv1.1 (Figures 11-12). Note, however, that here we compare 292 

pressure surfaces with depth surfaces. The most obvious result is the large spatial variability 293 

in the differences, which seem to correlate with the data distribution. Very generally, there are 294 

large differences (>10 µmol kg-1) in error estimates between the GLODAPv2 2000-2013 295 

TCO2 climatology and the GLODAPv1.1 climatology (Figure 11b), and between the 296 

GLODAPv2 1986-1999 and GLODAPv1.1 TCO2 climatologies in the top 200 dbar of the 297 

Southern Ocean (exemplified by the 10 dbar surface in Figure 11a and 11b). In both cases the 298 

error estimate in GLODAPv2 is frequently more than 15 µmol kg-1 higher than in 299 

GLODAPv1.1. For TCO2 the 1986-1999 climatology has comparable error to GLODAPv1.1 300 

in the Atlantic, but is smaller by 10-15 µmol kg-1 in the Pacific (Figure 11a). For the 2000-301 

2013 TCO2 climatology the GLODAPv2 mapping errors are frequently larger than those in 302 

GLODAPv1.1, but here also smaller in the Pacific Ocean (Figure 11b).  Below 1000 dbar 303 

(exemplified by the 3000 dbar surface in Figure 11c) the mapping errors are overall larger by 304 

5-10 µmol kg-1 in GLODAPv2 than in GLODAPv1.1. For TAlk the GLODAPv2 mapping 305 

errors exceed those of GLODAPv1.1 in the Southern Ocean in the top 200 dbar (exemplified 306 

by the 10 dbar surface in Figure 12a), but otherwise for the top 1000 dbar errors in the two 307 

products are comparable (not shown). Below 1000 dbar the GLODAPv2 TAlk errors are 308 

typically 5-10 µmol kg-1 larger than those of GLODAPv1.1 (exemplified by the 3000 dbar 309 

surface in Figure 12b).  310 

 A scientific study of the differences in mapping error between GLODAPv1.1 and 311 

GLODAPv2 and the mechanisms behind these would be worthwhile, and could perhaps 312 

improve future climatologies of the marine CO2 chemistry, but is beyond the scope of this 313 

paper. The reasons for the differences seen in Figures 11-12 are currently not clear, but 314 

several things are likely to contribute: (i) differences in the methods used; (ii) in general 315 

GLODAPv2 uses a smaller CL and this results in larger errors, but for TCO2 and pH in the 316 

top 1000 dbar the CL is larger and this explains the smaller errors on these surfaces; (iii) there 317 

are differences in data density and data distribution between the two versions, and the 318 

improved distribution in GLODAPv2 leads to larger natural variability and thus larger, more 319 

realistic, errors. 320 
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 For the macronutrients (nitrate, phosphate, silicate) the GLODAPv2 climatologies can 321 

be compared to the World Ocean Atlas (WOA) nutrient climatologies, but before doing so 322 

several things need to be considered: (i) methods used for mapping WOA (Garcia et al., 2010) 323 

are very different from those used in GLODAPv2; (ii) WOA also does not provide mapped 324 

error estimates for their climatologies; (iii) WOA reports nutrients with units µmol L-1 while 325 

GLODAPv2 uses units µmol kg-1. Given the lack of error fields in WOA a direct comparison 326 

of errors like we did for TCO2 and TAlk cannot be performed for the nutrients. Instead we 327 

have looked at the differences between the nitrate climatology in GLODAPv2 and in WOA09 328 

(for the purpose of this comparison roughly converted the µmol L-1 data in WOA to µmol kg-1 329 

by dividing by 1.024). These differences will be due to a combination of the differences in 330 

input data and the differences in mapping methods, and also here we compare pressure 331 

surfaces with depth surfaces. When comparing the GLODAPv2 gridded observations with the 332 

WOA09 climatology we see certain patterns (Figure 13). Near the surface the GLODAPv2 333 

observations are overall smaller than the WOA09 climatology in high latitudes (Figure 13a), 334 

and this is most likely a manifestation of the seasonal bias in GLODAPv2 which in these 335 

regions contains almost only summertime data. In the tropics and subtropics the differences 336 

are within the data uncertainties. In the deep ocean (Figure 13b), however, the differences 337 

between the GLODAPv2 observations and the WOA09 climatology are very similar to the 338 

differences between the GLODAPv2 observations and climatology (Figure 7b). This suggests 339 

that below the seasonally influenced surfaces the differences between GLODAPv2 and 340 

WOA09 stem mainly from differences in mapping method, but that the climatologies 341 

otherwise are comparable. The biggest difference between GLODAPv2 and WOA09 is that 342 

the latter has considerably more input data, and is thus able to provide monthly climatologies 343 

which GLODAPv2 cannot. Note that we have compared the GLODAPv2 nitrate climatology 344 

to WOA09 since the WOA13 has a very different vertical resolution. 345 

  346 

4 Best practices for using the GLODAPv2 1ºx1º data fields 347 

 For the marine CO2 chemistry parameters with known, large, temporal trends two 348 

climatologies are provided for the surface ocean (<1000 dbar). This division was 349 

implemented to reduce the risk of converting time trends into spatial variations in the 350 

climatology. Alternative and more sophisticated approaches certainly exist, and these will be 351 

considered for future versions; here, however, we choose as simple and transparent an 352 

approach as possible. The 1986-1999 climatology is centered on the early 1990s and the 353 
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2000-2013 climatology on the mid-2000s. The difference between the climatologies for the 354 

two time periods in no way represents an estimate of decadal change in global ocean CO2. 355 

The errors in each TCO2 climatology, mainly a consequence of limited spatial coverage of the 356 

input data, approach 100 µmol kg-1 in some regions, which is much larger than any expected 357 

trends. Additionally, each climatology was created using data from more than ten years, hence 358 

some fraction of our spatial features is a consequence of time trends in each of these periods. 359 

Users interested in time trends are better served by evaluating differences between repeat 360 

sections in the data product.  361 

  Planned future work includes creating mapped climatologies of several additional 362 

parameters available in the GLODAPv2 data product: water ages based on the halogenated 363 

transient tracer data and the 14C data. As estimates of the anthropogenic CO2 content based on 364 

the GLODAPv2 product become available we will consider creating new climatologies for 365 

TCO2 and pH, where the anthropogenic trend in the data has been removed.  366 
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Tables 526 

Table 1. Maximum distance criteria used when vertically interpolating the input data. 527 

Range (dbar) Maximum distance allowed 
0–200.99 100 
201–750.99 200 
751–1500.99 250 
1501–12000 500 
 528 
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Table 2. List of information available in the netcdf data files. 529 

Variable name Description 

lon Longitude in degrees east, range -180 – 180 

lat Latitude in degrees north, range -90 – 90 

tco2, talk, pH, ΩC, ΩA, nitrate, phosphate, silicate, 
oxygen, salinity, theta  Mapped climatology with land mask and 3σ mask applied.  

_error Mapping error associated with the mapped climatology 

_relerr 
Mapping error scaled with the global standard deviation of 
the input data 

Input_mean 
Binned and averaged mean of the observations on the 
same grid as the climatology 

Input_std Standard deviation of the binned mean.  

Input_N Number of observational data points in the grid cell  

Input_lon Binned and averaged longitude in degrees east 

Input_lat Binned and averaged latitude in degrees north 

 530 

Figures 531 

Figure 1. a) Data density of TCO2 in the years 1986-1999; b) Data density of TCO2 in the years 2000-2013. 532 
Both figures show data at the 10 dbar surface. 533 

Figure 2. Mapped climatology of TCO2 at 10 dbar (a, b) and 3000 dbar (c). a) is the climatology for the 534 
1986-1999 period while b) is for the 2000-2013 period.  535 

Figure 3. Mapped climatology of TAlk at 10 dbar (a) and 3000 dbar (b). 536 

Figure 4. Mapped climatology of nitrate at 10 dbar (a) and 3000 dbar (b).  537 

Figure 5. Difference between the gridded TCO2 input data and the mapped climatologies atv10 dbar (a,b) 538 
and 3000 dbar (c). a) is the climatology for the 1986-1999 period while b) is for the 2000-2013 period.  539 

Figure 6. Difference between the gridded TAlk input data and the mapped climatologies at 10 dbar (a) 540 
and 3000 dbar (b). 541 

Figure 7. Difference between the gridded nitrate input data and the mapped climatologies at 10 dbar (a) 542 
and 3000 dbar (b). 543 

Figure 8. Mapping error for TCO2 at 10 dbar (a, b) and 3000 dbar (c). a) is the error for the 1986-1999 544 
climatology while b) is for the 2000-2013 climatology. Notice how the error is large between repeat 545 
transect and creates a spatial pattern of square-like features in the Pacific.  546 

Figure 9. Mapping error for TAlk at 10 dbar (a) and 3000 dbar (b). Notice how the error is large between 547 
repeat transect and creates a spatial pattern of square-like features in the Pacific. 548 

Figure 10. Mapping error for nitrate at 10 dbar (a) and 3000 dbar (b). Notice how the error is large 549 
between repeat transect and creates a spatial pattern of square-like features in the Pacific.   550 

Figure 11. Difference in error estimates for TCO2 between GLODAPv2 and GLODAPv1.1. a) compares 551 
the 10 dbar surface from the 1986-1999 climatology in v2 with the 10 m surface in v1.1; b) compares the 552 
10 dbar surface from the 2000-2013 climatology in v2 with the 10 m surface in v1.1; c) compares the 3000 553 
dbar surface in v2 with the 3000 m surface in v1.1.  554 
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Figure 12. Difference in error estimates for TAlk between GLODAPv2 and GLODAPv1.1. a) compares 555 
the 10 dbar surface in v2 with the 10 m surface in v1.1, while b) compares the 3000 dbar surface in v2 with 556 
the 3000 m surface in v1.1.  557 

Figure 13. Differences between the GLODAPv2 nitrate gridded input data and the WOA09 annual 558 
mapped nitrate climatology. a) compares the 10 dbar surface in GLODAPv2 with the 10 m surface in 559 
WOA09, while b) compares the 3000 dbar surface in GLODAPv2 with the 3000 m surface in WOA09. 560 
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