Skip to main content

Advertisement

Log in

Capability of CAM5.1 in simulating maximum air temperature patterns over West Africa during boreal spring

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

This study classifies maximum air temperature patterns over West Africa into six groups and evaluates the capability of a global climate model (Community Atmospheric Model version 5.1; CAM) to simulate them. We analyzed 45-year (1961–2005) multi-ensemble (50 members) simulations from CAM and compared the results with those of the Climate Research Unit (CRU) and the twentieth Century Reanalysis data sets. Using Self Organizing Map algorithm to classify the spatial patterns of maximum air temperature during boreal spring, the study reveals the temperature patterns that CAM can simulate well and those the model struggles to reproduce. The results show that the best agreements between the composites of observation and CAM occur in the first temperature pattern group (which features positive temperatures anomalies over the Sahel) and Node 2 (which features near-normal temperature) pattern of the third group. CAM succeeded in reproducing some of the associated regional atmospheric dynamics and thermodynamic features in winds (horizontal and vertical), temperature fields, the cloud fractions, and the mean sea-level pressure. Although CAM struggles to capture the relationship between air temperature patterns and tele-connection indices during the boreal spring season over West Africa, it agrees with observations that temperature patterns over the sub-region cannot be associated with a single climate index. An ensemble member (SIM48) captures the inter-annual variation of the observed temperaure patterns with high sycronization (ɳ > 44%), much better than that of ensembles mean (ɳ < 30%). SIM48 also captures adequately four of the spatial patterns in comparison to three captured by the ensembles mean. This indicates that, for better seasonal forecasts and more reliable future climate projections, the practice whereby an ensemble mean is based on uniformly averaging the members rather than the performance of individual ensemble members needs to be reviewed. The results of the study may be used to improve the perfomance of CAM over West Africa, thereby strengthening the on-going efforts to include CAM as part of multi-model forecasting system over West Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abiodun BJ, Gutowski WJ, Abatan AA, Prusa JM (2011) CAM-EULAG: a non-hydrostatic atmospheric climate model with grid stretching. Acta Geophys 59(6):1158–1167. https://doi.org/10.2478/s11600-011-0032-2

    Article  Google Scholar 

  • Abiodun BJ, Lawal KA, Salami AT, Abatan AA (2012) Potential influences of global warming on future climate and extreme events in Nigeria. Reg Environ Change 13:477–491. https://doi.org/10.1007/s10113-012-0381-7

    Article  Google Scholar 

  • Afiesimama EA (2006) Annual cycle of the mid-tropospheric easterly jet over West Africa. Theor Appl Climatol 90:103–111. https://doi.org/10.1007/s00704-006-0284-y

    Article  Google Scholar 

  • Akinsanola AA, Zhou W (2018) Ensemble-based CMIP5 simulations of West African summer monsoon rainfall: current climate and future changes. Theoret Appl Climatol. https://doi.org/10.1007/s00704-018-2516-3

    Article  Google Scholar 

  • Alfani F, Dabalen A, Fisker P, Molini V (2015) Vulnerability to Malnutrition in the West African Sahel. Policy Research Working Paper; No. 7171. World Bank Group, Washington, DC. https://openknowledge.worldbank.org/handle/10986/21388. Accessed 20 Aug 2019

    Google Scholar 

  • Anderson CA, Bushman BJ, Groom RW (1997) Hot years and serious and deadly assault: empirical tests of the heat hypothesis. J Person Soc Psychol 73:1213–1223

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  • Buontempo C, Mathison C, Jones R, Williams K, Wang C, McSweeney C (2015) An ensemble climate projection for Africa. Clim Dyn 44:2097–2118. https://doi.org/10.1007/s00382-014-2286-2

    Article  Google Scholar 

  • Burke MB, Miguel E, Satyanath S, Dykema JA, Lobell DB (2009) Warming increases the risk of civil war in Africa. PNAS 106(49):20670–20674. https://www.pnas.org/content/106/49/20670. Accessed 20 Aug 2019

    Google Scholar 

  • Camberlin P, Janicot S, Poccard I (2001) Seasonality and atmospheric dynamics of the teleconnection between African rainfall and tropical sea-surface temperature: Atlantic vs. ENSO. Int J Climatol 21:973–1005. https://doi.org/10.1002/joc.673

    Article  Google Scholar 

  • Cavazos T (2000) Using self-organizing maps to investigate extreme climate events: an application to wintertime precipitation in the Balkans. J Clim 13(10):1718–1732

    Google Scholar 

  • Collins JM (2011) Temperature variability over Africa. J Clim 24:3649–3666. https://doi.org/10.1175/2011JCLI3753.1

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Bronnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • Conway G (2009) The science of climate change in Africa: impacts and adaptation. Discussion Paper No 1, Grantham Institute for Climate Change. http://www.imperial.ac.uk/grantham/publications/. Accessed 20 Aug 2019

  • Delworth TL, Zenh F, Vecchi GA, Yang X, Zhang L, Zhang R (2016) The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat Geosci 9:509–512. https://doi.org/10.1038/ngeo2738

    Article  Google Scholar 

  • Diasso U, Abiodun BJ (2015) Drought modes in West Africa and how well CORDEX RCMs simulate them. Theor Appl Climatol. https://doi.org/10.1007/s00704-015-1705-6

    Article  Google Scholar 

  • Diatta S, Fink AH (2014) Statistical relationship between remote climate indices and West African monsoon variability. Int J Climatol 34:3348–3367. https://doi.org/10.1002/joc.3912

    Article  Google Scholar 

  • Dosio A, Mentaschi L, Fischer EM, Wyser K (2018) Extreme heat waves under 1.5 °C and 2 °C global warming. Environ Res Lett 13:054006. https://doi.org/10.1088/1748-9326/aab827

    Google Scholar 

  • Durran DR (1999) Numerical methods for wave equations in geophysical fluid dynamics. Springer, New York

    Google Scholar 

  • Easterling DR, Horton B (1997) Maximum and minimum temperature trends for the globe. Science 227:364–367

    Google Scholar 

  • Enfield DB, Mestas-Nunez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J Geophys Res 104(C4):7841–7848

    Google Scholar 

  • Exenberger A, Pondorfer A (2011) Rain, temperature and agricultural production: The impact of climate change in Sub-Sahara Africa, 1961-2009. University of Innsbruck - Working Papers in Economics and Statistics, 26. https://www2.uibk.ac.at/downloads/c4041030/wpaper/2011-26.pdf.  Accessed 20 Aug 2019

  • FAO (Food and Agriculture Organization of the United Nations) (1997) Seawater intrusion in coastal aquifers: Guidelines for study, monitoring and control. FAO Water Reports, Rome

    Google Scholar 

  • FAO, IFAD (International Fund for Agricultural Development), WFP (World Food Programme) (2015) The state of food insecurity in the world: meeting the 2015 International Hunger Targets: taking stock of uneven progress (Rome: FAO) (http://www.fao.org/3/a-i4646e.pdf). Accessed 20 Aug 2019

  • Flocas H, Tolika K, Anagnostopoulou C, Patrikas I, Maheras P, Vafiadis M (2004) Evaluation of maximum and minimum temperature NCEP-NCAR reanalysis data over the Greek area. Theor Appl Climatol 80:49–65

    Google Scholar 

  • Flynn A, McGreevy C, Mulkerrin EC (2005) Why do older patients die in a heatwave? Q J M 98(3):227–229. https://doi.org/10.1093/qjmed/hci025

    Article  Google Scholar 

  • Ford J, Katondo KM (1977) The distribution of Tsetse Flies in Africa. Hammond and Kell, London

    Google Scholar 

  • Gbobaniyi E, Sarr A, Sylla MB, Diallo I, Lennard C, Dosio A, Dhiediou A, Kamga A, Browne-Klutse NA, Hewitson B, Nikulina G, Lamptey B (2013) Climatology, annual cycle and interannual variability of precipitation and temperature in CORDEX simulations over West Africa. Int. J. Climatol. https://doi.org/10.1002/joc.3834

    Google Scholar 

  • Gbode IE, Dudhia J, Ogunjobi KO, Ajayi VO (2018) Sensitivity of different physics schemes in the WRF model during a West African monsoon regime. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2538-x

    Article  Google Scholar 

  • Hagos SM, Cook KH (2008) Ocean warming and late-twentieth century Sahel drought and recovery. J Clim 21:3797–3814. https://doi.org/10.1175/2008JCLI2055.1

    Article  Google Scholar 

  • Haltiner GJ, Williams RT (1980) Numerical prediction and dynamic meteorology, 2nd edn. Wiley, New York

    Google Scholar 

  • Hao X, He S, Wang H, Han T (2017) The impact of long-term oceanic warming on the Antarctic Oscillation in austral winter. Sci Rep 7:12321. https://doi.org/10.1038/s41598-017-12517-x

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations. Int J Climatol. https://doi.org/10.1002/joc.3711

    Google Scholar 

  • Hegerl GC, Crowley TJ, Allen M, Hyde WT, Pollack HN, Smerdon J, Zorita E (2006) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666. https://doi.org/10.1175/JCLI4011.1

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 663–745

  • Heskes T (2001) Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans Neural Netw 12(6):1299–1305

    Google Scholar 

  • Hewitson BC, Crane RG (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26

    Google Scholar 

  • Houghton J (2004) Global warming: the complete briefing, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hourdin F, Musat I, Guichard F, Ruti PM, Favot F, Filiberti MA, Pham M, Grandpeix JY, Polcher J, Marquet P, Boone A, Lafore JP, Redelsperger JL, Dellaquila A, Doval TL, Traore AK, Gallee H (2010) AMMA-model intercomparison project. Bull Am Meteorol Soc 91(1):95–104

    Google Scholar 

  • Hulme M, Osborn TJ, Johns TC (1998) Precipitation sensitivity to global warming: comparison of observations with HadCM2 simulations. Geophys Res Lett 25:3379–3382

    Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17(145–168):145–168

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitation. Science 269(5224):676–679. https://doi.org/10.1126/science.269.5224.676

    Article  Google Scholar 

  • Huva R, Dargaville R, Rayner P (2014) The impact of filtering self-organizing maps: a case study with Australian pressure and rainfall. Int J Climatol 35:624–633. https://doi.org/10.1002/joc.4008

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Johnson NC (2012) How many ENSO flavors can we distinguish? J Clim 26(13):4816–4827. https://doi.org/10.1175/JCLI-D-12-00649.1

    Article  Google Scholar 

  • Kaplan A, Cane M, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(18):567–1589

    Google Scholar 

  • Kiladis GN, Thorncroft CD, Hall NMJ (2006) Three-dimensional sturcture and dynamics of african easterly waves. Part I: observations. J Atmos Sci 63:2212–2230

    Google Scholar 

  • Klutse NAB, Aboagye-Antwi F, Owusu K, Ntiamoa-Baidu Y (2014) Assessment of patterns of climate variables and malaria cases in two ecological zones of Ghana. Open J Ecol 4:764–775. https://doi.org/10.4236/oje.2014.412065

    Article  Google Scholar 

  • Klutse NAB, Ajayi VO, Gbobaniyi EO, Egbebiyi TS, Kouadio K, Nkrumah F, Quagraine KA, Olusegun C, Diasso U, Abiodun BJ, Lawal K, Nikulin G, Lennard C, Dosio A (2018) Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa. Environ Res Lett 13:055013. https://doi.org/10.1088/1748-9326/aab37b

    Google Scholar 

  • Knippertz P, Fink AH, Schuster R, Trentmann J, Schrage JM, Yorke C (2011) Ultra-low clouds over the southern West African monsoon region. Geophys Res Lett 38:L21808. https://doi.org/10.1029/2011GL049278

    Article  Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480

    Google Scholar 

  • Kohonen T, Hynninen J, Kangas J, Laaksonen J (1995) SOM_PAK, The self-organizing map program package version 3.1. Laboratory of computer and information science. Helsinki University of Technology, Finland

    Google Scholar 

  • Lavaysse C, Flamant C, Janicot S, Parker DJ, Lafore J-P, Sultan B (2009) Seasonal evolution of the West African heat low: a climatological perspective. Clim Dyn. https://doi.org/10.1007/s00382-009-0553-4

    Article  Google Scholar 

  • Lavaysse C, Flamant C, Janicot S, Knippertz P (2010) Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the West African heat low. Q J R Meteorol Soc 136(s1):141–158. https://doi.org/10.1002/qj.555

    Article  Google Scholar 

  • Lawal KA, Stone DA (2019) On the co-variability between climate indices and the potential spread of seasonal climate simulations over south african provinces. Atmos Clim Sci 9:381–397. https://doi.org/10.4236/acs.2019.93027

    Article  Google Scholar 

  • Lawal KA, Stone DA, Aina T, Rye C, Abiodun BJ (2015) Trends in the potential spread of seasonal climate simulations over South Africa. Int J Climatol 35:2193–2209. https://doi.org/10.1002/joc.4234

    Article  Google Scholar 

  • Lawal KA, Abatan AA, Anglil O, Olaniyan E, Olusoji VH, Oguntunde PG et al (2016) The late onset of the 2015 wet season in Nigeria. Bull Am Meteorol Soc 97:63–69. https://doi.org/10.1175/BAMS-D-16-0131.1

    Article  Google Scholar 

  • Lim Y-H, Park M-S, Kim Y, Kim H, Hong Y-C (2015) Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden. Int J Biometeorol 59:1035–1043. https://doi.org/10.1007/s00484-014-0917-2

    Article  Google Scholar 

  • Martin ER, Thorncroft CD (2014) The impact of the AMO on the West African monsoon annual cycle. Q J R Meteorol Soc 140:31–46. https://doi.org/10.1002/qj.2107

    Article  Google Scholar 

  • Mason SJ (2004) On using ‘‘Climatology’’ as a reference strategy in the brier and ranked probability skill scores. Mon Weather Rev 132:1891–1895

    Google Scholar 

  • Mera R, Laing AG, Semazzi F (2014) Moisture variability and multiscale interactions during spring in West Africa. Mon Weather Rev 142:3178–3198. https://doi.org/10.1175/MWR-D-13-00175.1

    Article  Google Scholar 

  • Misra J (1991) Phase synchronization. Inf Process Lett 38(2):101–105

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int J Climatol 25:693–712. https://doi.org/10.1002/joc.1181

    Article  Google Scholar 

  • Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn. https://doi.org/10.1007/s00382-010-0867-2

    Google Scholar 

  • Molesworth AM (2003) Environmental risk and meningitis epidemics in Africa. Res Emerg Infect Dis 9:1287–1293

    Google Scholar 

  • Neale RB et al. (2012) Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Technical Note, June 2010, NCAR/TN-486 + STR. http://www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf. Accessed 20 Aug 2019

  • New M, Hulme M, Jones PD (2000) Representing twentieth century space-time climate variability. Part 2: development of 1901-96 monthly grids of terrestrial surface climate. J Clim 13:2217–2238. https://doi.org/10.1175/1520-0442(2000)013%3c2217:RTCSTC%3e2.0.CO;2

    Article  Google Scholar 

  • Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, and White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp. 1199–1265

  • Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its inter-annual variability. ISRN Meteorol 2013:32 http://dx.doi.org/10.1155/2013/453521. (Article ID 453521)

  • Nicholson SE, Kim J (1997) The relationship of the El Nino-Southern Oscillation to African rainfall. Int J Climatol 17(2):117–135. https://doi.org/10.1002/(SICI)1097-0088(199702)17:2%3c117:AID-JOC84%3e3.0.CO;2-O

    Article  Google Scholar 

  • Odada E, Olago D (2005) Holcene climatic, hydrological and environmental oscillations in the tropics with special reference to Africa. In: Low PS (eds) Climate change and Africa. Cambridge University Press, Cambridge, pp 3–23

  • Olusegun CF, Oguntunde PG, Gbobaniyi EO (2018) Simulating the impacts of tree, C3, and C4 plant functional types on the future climate of West Africa. Climate. https://doi.org/10.3390/cli6020035

    Google Scholar 

  • Omotosho JB, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14:209–225. https://doi.org/10.1002/met.11

    Article  Google Scholar 

  • Parker DE, Jones PD, Folland CK, Bevan A (1994) Inter-decadal changes of surface temperature since the late nineteenth century. J Geophys Res 99(14):373–399

    Google Scholar 

  • Polo I, Rodriguez-Fonseca B, Losada T, Garcia-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475

    Google Scholar 

  • Ratnam JV, Behera SK, Masumoto Y, Yamagata T (2014) Remote effects of El Nino and Modoki events on the austral summer precipitation of southern Africa. J Clim 27:3802–3815. https://doi.org/10.1175/JCLI-D-13-00431.1

    Article  Google Scholar 

  • Reed RJ, Norquist DC, Recker EE (1977) The structure and properties of African wave disturbances as observed during phase III of GATE. Mon Weather Rev 105:317–333

    Google Scholar 

  • Reusch DB, Alley RB, Hewitson BC (2005) Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data. Polar Geogr 29(3):188–212

    Google Scholar 

  • Reusch DB, Alley RB, Hewitson BC (2007) North Atlantic climate variability from a self-organizing map perspective. J Geophys Res 112:D02104. https://doi.org/10.1029/2006JD007460

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1995) A high-reolution global sea surface temperature climatology. J Clim 8:1571–1583

    Google Scholar 

  • Robinson PJ (2001) On the definition of a heat wave. J Appl Meteorol 40:762–775

    Google Scholar 

  • Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol 90(3):225–241

    Google Scholar 

  • Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North Africa (1906–1992): observations and modelling. Q J R Meteorol Soc 121:669–704

    Google Scholar 

  • Rusticucci MM, Kousky VE (2002) A Comparative study of maximum and minimum temperatures over Argentina: NCEP-NCAR reanalysis versus station data. J Clim 15:2089–2101

    Google Scholar 

  • Sachs J, Malaney P (2002) The economic and social burden of malaria. Nature 415:680–685. https://doi.org/10.1038/415680a

    Article  Google Scholar 

  • Schulz R, Reggia JA (2004) Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps. Neural Comput 16(3):535–561

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical Merged Land-Ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Google Scholar 

  • Stone DA, Risser MD, Angélil OM, Wehner MF, Cholia S, Keen N, Krishnan H, O’Brien TA, Collins WD (2018) A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Weather Clim Extremes 19:10–19. https://doi.org/10.1016/j.wace.2017.12.003

    Article  Google Scholar 

  • Stone DA, Christidis N, Folland C, Perkins-Kirkpatrick S, Perlwitz J, Shiogama H, Wehner MF, Wolski P, Cholia S, Krishnan H, Murray D, Angélil O, Beyerle U, Ciavarella A, Dittus A, Quan X-W, Tadross M (2019) Experiment design of the International CLIVAR C20C+ Detection and Attribution Project. Weather Clim Extremes. https://doi.org/10.1016/j.wace.2019.100206

    Article  Google Scholar 

  • Sultan B, Janicot S (2003) The West African monsoon dynamics. Part II: the “Preonset” and “Onset” of the summer monsoon. J Clim 16:3407–3427

    Google Scholar 

  • Sylla MB, Dell’Aquila A, Ruti PM, Giorgi F (2009) Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int J Climatol 30:1865–1883. https://doi.org/10.1002/joc.2029

    Article  Google Scholar 

  • Thornton SN (2010) Thirst and hydration: physiology and consequences of dysfunction. Physiol Behav 100(1):15–21. https://doi.org/10.1016/j.physbeh.2010.02.026

    Article  Google Scholar 

  • Trenberth KE (2001) Climate variability and global warming. Science 293:48–49

    Google Scholar 

  • Trenberth KE, Caron JM, Stepaniak DP (2000) The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Clim Dyn 17:259–276

    Google Scholar 

  • Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A, Chevallier M et al (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS001683

    Article  Google Scholar 

  • Waha K, Müller C, Rolinski S (2013) Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century. Global Planet Change 106:1–12. https://doi.org/10.1016/j.gloplacha.2013.02.009

    Article  Google Scholar 

  • Wang L (2017) Dake Chen: unraveling the secrets of ocean–climate interaction. Natl Sci Rev 4:136–139. https://doi.org/10.1093/nsr/nww100

    Article  Google Scholar 

  • Weigel AP, Liniger MA, Appenzeller C (2006) The discrete brier and ranked probability skill scores. Mon Weather Rev 135:118–124

    Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204. https://doi.org/10.1111/j.1745-6584.2008.00535.x

    Article  Google Scholar 

  • WHO (World Health Organization) (2013) WHO Global Malaria Programme, World Malaria Report. WHO Press, World Health Organization, Geneva

  • Xue Y, De Sales F, Lau WM, Boone A, Feng J, Dirmeyer P, Wu MLC (2010) Intercomparison and analyses of the climatology of the West African Monsoon in the West African Monsoon Modeling and Evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35(1):3–27

    Google Scholar 

  • Yan X-H, Boyer T, Trenberth K, Karl TR, Xie S-P, Nieves V, Tung K-K, Roemmich D (2016) The global warming hiatus: slowdown or redistribution? Earth’s Future 4:472–482. https://doi.org/10.1002/2016EF000417

    Article  Google Scholar 

  • Yin H (2008) The self-organizing maps: background, theories, extensions and applications. Stud Comput Intell (SCI) 115:715–762

    Google Scholar 

Download references

Acknowledgements

This work was supported with grants from the Water Research Commission (WRC, South Africa – Project K5/2067/1) and the U.K. Research and Innovation as part of the Global Challenges Research Fund, African SWIFT program, grant number NE/P021077/1 (https://africanswift.org: work packages R2 and R5). Computation supports were provided by the Climate Sciences Analysis Group (CSAG, University of Cape Town) and the Centre for High Performance Computing (CHPC, South Africa). DAS and MFW were supported by the Director, Office of Science, Office of Biological and Environ-mental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The International CLIVAR C20C+ D&A project and the simulations of the CAM5.1 model used resources of the National Energy Research Scientific Computing Center (NERSC), also supported by the Office of Science of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. The CAM5.1 data are available at http://portal.nersc.gov/c20c/. We thank all anonymous reviewers whose comments improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamoru A. Lawal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawal, K.A., Abiodun, B.J., Stone, D.A. et al. Capability of CAM5.1 in simulating maximum air temperature patterns over West Africa during boreal spring. Model. Earth Syst. Environ. 5, 1815–1838 (2019). https://doi.org/10.1007/s40808-019-00639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-019-00639-2

Keywords

Navigation