Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T13:05:03.065Z Has data issue: false hasContentIssue false

Studies on the Properties and Formation of Quick Clays

Published online by Cambridge University Press:  01 January 2024

Justus Osterman*
Affiliation:
Swedish Geotechnical Institute, Stockholm, Sweden

Abstract

In a natural clay, the occurrence of a high sensitivity, i.e. a high quotient between the shear strength of the undisturbed and remolded soils respectively, under undrained conditions, is connected to thixotropic effects and to “quickness”.

The general composition of the soils in which quick clay occurs is described, and mention is made of the occurrence of non-argillaceous rock fragments in a matrix of clay particles. Mite is the main clay mineral. Quickness occurs both in salt-leached, marine deposited clays and in clays deposited in fresh water. The pore water of these clays is low in electrolytes and undecomposed organic material. It is found that quick clays often occur near peat and similar humic deposits. Also briefly discussed is the internal stress distribution in natural clays under various consolidation conditions, the structure of quick clays and their conditions of formation. The consistency of clays is considered, as is the stability and coagulation conditions of suspensions. This is followed by a commentary on physico-chemical effects contributing to the formation of quick clays under natural conditions, and a discussion of the salt-leaching theory and the theory on the effect of peptizing agents.

In the discussion, the author draws parallels between the coagulation and the thixotropic phenomena, and between the stability and dispersion of suspensions and the quickness.

Type
Symposium on Mechanism of Emplacement (Formation) of Clay Minerals
Copyright
Copyright © The Clay Minerals Society 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, E. (1948) Thixotrople und Fliesseigenschaften feinkörniger Böden: Geol. Rundschau Bd. 36, pp. 1029.CrossRefGoogle Scholar
Aschan, O. (1908) Humusämnena i de nordiska inlandsvattnen och deras betydelse särskilt vid sjömalmers daning: Bidrag t. kännedom af Finlands natur och folk. 66, 1177.Google Scholar
Helsingfors, Bishop A. W. and Henkel, D. J. (1953) Pore pressure change during shear in two undisturbed clays: 3. Internat. Conf. Soil Mech. a. Found. Engng. Proc. v. 1, pp. 9499.Google Scholar
Bjerrum, L. and Rosenqvist, I. Th. (1957) Some experiments with artificially sedimented clays: Geotechnique No. 3, pp. 124136. Also in Norg. Geot. Inst. Publ. No. 25.Google Scholar
Cadling, L. and Odenstad, S. (1950) The vane borer. An apparatus for determining the shear strength of clay soils directly in the ground, Stockholm: R. Swed. Geot. Inst. Proc. No. 2.Google Scholar
Casagrande, A. (1932) Research on the Atterberg limits of soils: Public Roads v. 13, No. 8, pp. 121130, 136.Google Scholar
Casagrande, A. (1936) Characteristics of cohesionless soils affecting the stability of slopes and earth fills: J. Boston Soc. Civ. Engrs. v. 23, No. 1, pp, 13-32. Also in Harv. Soil Mech. Ser. No. 2.Google Scholar
Casagrande, A. (1958) Notes on the design of the liquid limit device: Geotechnique v. 8, No. 2, pp. 8491.CrossRefGoogle Scholar
Collini, B. (1950) Om våra kvartära lerors mineralogiska sammansättning: Geol. Fören. Stockholm. Förh, 72, H. 2, pp. 192206.CrossRefGoogle Scholar
Ekström, G. (1927) Klassifikation av svenska åkerjordar: Sv. Geol. Unders. Ser. C, No. 345.Google Scholar
Hansbo, S. (1957) A new approach to the determination of the shear strength of clay by the fall-cone test. Stockholm: R. Swed. Geot. Inst. Proc. No. 14.Google Scholar
Hansbo, S. (1960) Consolidation of clay, with special reference to influence of vertical sand drains. Stockholm: Swed. Geot. Inst. Proc. No. 18.Google Scholar
Holdridge, D. A. (1953) The colloidal and Theological properties of clay. Stoke on Trent. In Ceramics, A Symposium (1950) pp. 6093.Google Scholar
Jakobson, V. (1952) The landslide at Surte on the Göta River, September 29, 1950: R. Swed. Geot. Inst. Proc. No. 5.Google Scholar
Jerbo, A. and Hall, F. (1961) Några synpunkter på högsensitiva bottniska sediment: Geol. Foren. Stockholm Förh. 83, H. 3.CrossRefGoogle Scholar
Karlsson, R. (1961) Suggested improvements in the liquid limit test, with reference to flow properties of remolded clays: 6. Internat. Conf. Soil Mech. a. Found Engng. Proc. v. 1, pp. 171184. Also in Swed, Geot. Inst. Repr. a. Prel. Rep. No. 4.Google Scholar
Keinonen, K. (1963) On the sensitivity of water-laid sediments in Finland and factors inducting sensitivity, Helsinki: The State Inst, for Tech. Research. Publ. 77.Google Scholar
Kerr, P. F. and Liebling, R. S. (1963) Glacial and post-glacial quick clays: Columbia University, New York, Dept. of Geology.Google Scholar
Kjellman, W., Kallstenius, T. and Wager, O. (1950) Soil sampler with metal foils. Stockholm: R. Swed. Geot. Inst. Proc. No. 1.Google Scholar
Low, P. F. (1959) Discussion on ion exchange phenomena: Amer. Soc. Civ. Engrs. Proc. 85, No. SM2, pp. 7989. (Also in Trans. ASCE, v. 126, 1961, pp. 728-737).Google Scholar
Mattson, S. and Gustafsson, Y. (1937) The laws of soil colloidal behavior: XIX. The gel and the soil complex in soil formation: Soil Sci. v. 43, pp. 453473.CrossRefGoogle Scholar
Mitchell, J. K. (1962) Components of pore water pressure and their engineering significance: Clays and Clay Minerals, 9th Conf. Pergamon Press, pp. 162184.CrossRefGoogle Scholar
Odén, S. (1919) Die huminsäuren. Chemische, physikalische und bodenkundliche Forschungen: Kolloidchem. Beih. v. 11.Google Scholar
Olsson, J. (1919) Vissa rön beträflande lerors fasthet m.m. Gothenburg: Tekn. Samf. Handl. Nr. 6, pp. 16.Google Scholar
Osterman, J. (1960a) Notes on the shearing resistance of soft clays. Stockholm: Acta Poly techn. S cand. Civ. Engng. a. Build. Constr. Ser. No. 2.Google Scholar
Osterman, J. (1960b) Views on the stability of clay slopes: Geol. Fören. Stockholm. Förh. 83, H. 3, pp. 346366. Also in Swed. Geot. Inst. Repr. a. Prel. Rep. No. 1.CrossRefGoogle Scholar
Osterman, J. and Lindskog, G. (1963) Influence of lateral movement in clay upon settlements in some test areas: 1963 European Conf. on Soil Mech. and Found. Engng. in Wiesbaden. (Problems of settlements and compressibility of soils).Google Scholar
Penner, E. (1963) Sensitivity in Leda clay: Nature, v. 197, pp. 347348.CrossRefGoogle Scholar
Roscoe, K. H., Schofield, A. N. and Wroth, C. P. (1958) On the yielding of soils: Geotechnique v. 8, pp. 2253.CrossRefGoogle Scholar
Rosenqvist, I. Th. (1946) Om leires kvikkagtighet: Stat. Vegv. Veglab. Oslo. Medd. Nr. 4, pp. 512.Google Scholar
Rosenqvist, I. Th. (1949) En ny metode til bestämmelse av innbyrdes mengdeforhold mellom visse finkornige mineraler: Norsk Geol. Tidskr. 28(1).Google Scholar
Rosenqvist, I. Th. (1955) Investigations in the clay-electrolyte-water system: Norg. Geol. Inst. Publ. No. 9, Oslo.Google Scholar
Rosenqvist, I. Th. (1960) Marine clays and quick clay slides in South and Central Norway: Int. Geol. Congr. Norden 1960 (Guide to Excursion No. 13).Google Scholar
Ruiz, C. L. (1962) Osmotic interpretation of the swelling of expansive soils. Highway Research Board. Bull. 313.Google Scholar
Sandegren, E. (1960) Skredet vid Kyrkviken, Februari 1959: Geol. Fören, Stockholm Förh, 82, E. 3.CrossRefGoogle Scholar
Silfverberg, L. (1955) Influence of organic matter on differential thermal analysis of clays: R. Swed. Geot. Inst. Proc. No. 11.Google Scholar
Skempton, A. W. (1953) The colloidal “activity” of clays: 3. Internat. Conf. Soil Mech. a. Found. Engng. Proe. v. 1, pp. 5761.Google Scholar
Soveri, U. (1957) Om finska kvartära lerors mineralproblematik: Geol. Fören. Stockholm, Förh. Bd. 79, H. 1, pp. 6267.CrossRefGoogle Scholar
Sundberg, K. (1932) Effect of impregnating waters on electrical conductivity of soils and rocks: Amer. Inst. Min. a. Metallurg. Engrs. Trans. 97, pp. 367391. Geophys. Prosp.Google Scholar
Swedish Committee on Piston Sampling (1961) Standard Piston Sampling. Stockholm. R. Swed. Geot. Inst. Proc. No. 19.Google Scholar
Swedish State Railways (1922) Geot. Commission 1914-22. Final Report. Stockholm. Stat. Järnvägar Medd. Nr. 2.Google Scholar
Söderblom, R. (1957) Some investigations concerning salt in clay: 4. Int. Conf. Soil Mech. a. Found. Engng. Proc. v. 1, pp. 111115.Google Scholar
Söderblom, R. (1959) Aspects on some problems of geot. chemistry: Geol. Fören. Stockholm Förh. 81, H. 4.CrossRefGoogle Scholar
Söderblom, R. (1960) Aspects on some problems of geot. chemistry II: Geol. Fören. Stochkolm Förh. 82, H. 3, pp. 367381. Also in Swed. Geot, Inst. Repr. a. Prel. Rep. No. 2.CrossRefGoogle Scholar
Söderblom, R. (1963) Some laboratory experiments on the dispersion and erosion of clay materials: Int. Clay Conf. (1963) Proc. pp. 277284.Google Scholar
Sökjer, G. (1961) Sounding, measurements of shear strength in situ, and sampling by means of the helical sounding borer driven by the boring machine: A-sond. 5. Int. Conf Soil Mech. a. Found. Engng. v. 1, pp. 541545.Google Scholar
Tamm, O. (1928) Några experimentella rön, belysande den glaciala lerbildningen: Geol. Fören. Stockholm Förh. 50, H. 1.CrossRefGoogle Scholar
Tölke, F. (1937) Die geophysikalische Baugrunduntersuchung unter besonderer Berücksichtigung der geoelektrischen Aufschlussverfahren: Bauing H. 2122.Google Scholar
Van Beneden, G. (1958) Sur le comportement des matières humiques dans les eaux: Centre Belge d'Etude et de Documentation des Eaux, Bull. No. 39–1958/1, pp. 3552.Google Scholar
Wiklander, L. (1950) Difierentialtermisk analys av några kvartära svenska leror: Geol. Fören. Stockholm Förh. 72, H. 2, pp. 119132.Google Scholar