Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells

Abstract

Electrode materials for intermediate temperature (500–700 C) solid oxide fuel cells require electrical and mechanical stability to maintain performance during the cell lifetime. This has proven difficult to achieve for many candidate cathode materials and their derivatives with good transport and electrocatalytic properties because of reactivity towards cell components, and the fuels and oxidants. Here we present Ba0.5Sr0.5(Co0.7Fe0.3)0.6875W0.3125O3−δ (BSCFW), a self-assembled composite prepared through simple solid state synthesis, consisting of B-site cation ordered double perovskite and disordered single perovskite oxide phases, as a candidate cathode material. These phases interact by dynamic compositional change at the operating temperature, promoting both chemical stability through the increased amount of W in the catalytically active single perovskite provided from the W-reservoir double perovskite, and microstructural stability through reduced sintering of the supported catalytically active phase. This interactive catalyst-support system enabled stable high electrochemical activity through the synergic integration of the distinct properties of the two phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram and crystal structure of the composite system.
Figure 2: Stability of BSCFW shown by XRD patterns.
Figure 3: Rietveld refinement of BSCFW.
Figure 4: TEM studies of BSCFW.
Figure 5: ASR and SEM micrographs for BSCFW and other materials.

Similar content being viewed by others

References

  1. Irvine, J. T. S. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016).

    Google Scholar 

  2. Yokokawa, H. Towards comprehensive description of stack durability/reliability behavior. Fuel Cells 15, 652–668 (2015).

    Google Scholar 

  3. Zhang, X. et al. A review of integration strategies for solid oxide fuel cells. J. Power Sources 195, 685–702 (2010).

    Google Scholar 

  4. Kilner, J. A. & Burriel, M. Materials for intermediate-temperature solid-oxide fuel cells. Annu. Rev. Mater. Res. 44, 365–393 (2014).

    Google Scholar 

  5. Aguadero, A. et al. Materials development for intermediate-temperature solid oxide electrochemical devices. J. Mater. Sci. 47, 3925–3948 (2012).

    Google Scholar 

  6. Lee, K. T. & Wachsman, E. D. Role of nanostructures on SOFC performance at reduced temperatures. MRS Bull. 39, 783–791 (2014).

    Google Scholar 

  7. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G. & Barnett, S. A. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016).

    Google Scholar 

  8. Kendrick, E. & Slater, P. R. Battery and solid oxide fuel cell materials. Annu. Rep. Prog. Chem. A 109, 396–420 (2013).

    Google Scholar 

  9. Shao, Z. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Google Scholar 

  10. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Google Scholar 

  11. Demont, A. et al. Single sublattice endotaxial phase separation driven by charge frustration in a complex oxide. J. Am. Chem. Soc. 135, 10114–10123 (2013).

    Google Scholar 

  12. Jung, J.-I. & Edwards, D. X-ray photoelectron study on Ba0.5Sr0.5CoFe1−xO3−δ (BSCF: x = 0.2 and 0.8) ceramics annealed at different temperature and pO2. J. Mater. Sci. 46, 7415–7422 (2011).

    Google Scholar 

  13. Yan, A. et al. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC: I. The effect of CO2 on the cell performance. Appl. Catal. B 66, 64–71 (2006).

    Google Scholar 

  14. Yan, A., Maragou, V., Arico, A., Cheng, M. & Tsiakaras, P. Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode SOFC: II. The effect of CO2 on the chemical stability. Appl. Catal. B 76, 320–327 (2007).

    Google Scholar 

  15. Wang, K. et al. Properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ + Sm0.2Ce0.8O1.9 composite cathode. J. Power Sources 179, 60–68 (2008).

    Google Scholar 

  16. Patra, H., Rout, S. K., Pratihar, S. K. & Bhattacharya, S. Thermal, electrical and electrochemical characteristics of Ba1−xSrxCo0.8Fe0.2O3−δ cathode material for intermediate temperature solid oxide fuel cells. Int. J. Hydrog. Energy 36, 11904–11913 (2011).

    Google Scholar 

  17. Li, S., Lü, Z., Huang, X. & Su, W. Thermal, electrical, and electrochemical properties of Nd-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ as a cathode material for SOFC. Solid State Ion. 178, 1853–1858 (2008).

    Google Scholar 

  18. Kharton, V. V. et al. Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105–1117 (2001).

    Google Scholar 

  19. Sameshima, S., Ichikawa, T., Kawaminami, M. & Hirata, Y. Thermal and mechanical properties of rare earth-doped ceria ceramics. Mater. Chem. Phys. 61, 31–35 (1999).

    Google Scholar 

  20. Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1969).

    Google Scholar 

  21. Wells, A. F. Structural Inorganic Chemistry (Oxford Univ. Press, 1984).

    Google Scholar 

  22. Popov, M. P., Starkov, I. A., Bychkov, S. F. & Nemudry, A. P. Improvement of Ba0.5Sr0.5Co0.8Fe0.2O3−δ functional properties by partial substitution of cobalt with tungsten. J. Membr. Sci. 469, 88–94 (2014).

    Google Scholar 

  23. Itoh, T. et al. Determination of the crystal structure and charge density of (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33 by Rietveld refinement and maximum entropy method analysis. Solid State Commun. 149, 41–44 (2009).

    Google Scholar 

  24. Chen, Z., Ran, R., Zhou, W., Shao, Z. & Liu, S. Assessment of Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane. Electrochim. Acta 52, 7343–7351 (2007).

    Google Scholar 

  25. McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A. & Bouwmeester, H. J. M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ . Solid State Ion. 177, 1737–1742 (2006).

    Google Scholar 

  26. Lim, Y. H., Lee, J., Yoon, J. S., Kim, C. E. & Hwang, H. J. Electrochemical performance of Ba0.5Sr0.5CoxFe1−xO3−δ (x = 0.2–0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs. J. Power Sources 171, 79–85 (2007).

    Google Scholar 

  27. Bi, L., Fabbri, E. & Traversa, E. Novel Ba0.5Sr0.5(Co0.8Fe0.2)(1−x)TixO3−δ (x = 0, 0.05, and 0.1) cathode materials for proton-conducting solid oxide fuel cells. Solid State Ion. 214, 1–5 (2012).

    Google Scholar 

  28. Fang, S. M., Yoo, C. Y. & Bouwmeester, H. J. M. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Solid State Ion. 195, 1–6 (2011).

    Google Scholar 

  29. Ray, R. et al. Electronic structure of ordered double perovskite Ba2CoWO6 . AIP Conf. Proc. 1591, 1155–1157 (2014).

    Google Scholar 

  30. Ma, Z. & Zaera, F. Encyclopedia of Inorganic Chemistry (John Wiley, 2006).

    Google Scholar 

  31. de Bruijn, F. A., Dam, V. A. T. & Janssen, G. J. M. Durability and degradation issues of PEM fuel cell components. Fuel Cells 8, 3–22 (2008).

    Google Scholar 

  32. Shah, M., Voorhees, P. W. & Barnett, S. A. Time-dependent performance changes in LSCF- infiltrated SOFC cathodes: the role of nano-particle coarsening. Solid State Ion. 187, 64–67 (2011).

    Google Scholar 

  33. Jiang, S. P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydrog. Energy 37, 449–470 (2012).

    Google Scholar 

  34. Tietz, F., Mai, A. & Stöver, D. From powder properties to fuel cell performance—a holistic approach for SOFC cathode development. Solid State Ion. 179, 1509–1515 (2008).

    Google Scholar 

  35. Haanappel, V. A. C. et al. Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs. J. Power Sources 141, 216–226 (2005).

    Google Scholar 

  36. Coelho, A. A. TOPAS Academic: General Profile and Structure Analysis Software for Powder Diffraction Data (Bruker AXS, 2010).

    Google Scholar 

  37. Obst, M., Gasser, P., Mavrocordatos, D. & Dittrich, M. TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling. Am. Mineral. 90, 1270–1277 (2005).

    Google Scholar 

  38. Leah, R. T. et al. Ceres power steel cell technology: rapid progress towards a truly commercially viable SOFC. ECS Trans. 68, 95–107 (2015).

    Google Scholar 

  39. Fergus, J. W. Electrolytes for solid oxide fuel cells. J. Power Sources 162, 30–40 (2006).

    Google Scholar 

  40. Johnson, D. ZView: A Software Program for IES Analysis Version 3.1c (Scribner Associates Inc., 2007).

    Google Scholar 

  41. Shin, F. et al. Self-assembled Dynamic Perovskite Composite Cathodes for Intermediate Temperature Solid Oxide Fuel Cells (Datacat, 2016); http://dx.doi.org/10.17638/datacat.liverpool.ac.uk/231

    Google Scholar 

Download references

Acknowledgements

We thank EPSRC for support under EP/H000925 and EP/N004884. Synchrotron X-ray diffraction work was carried out with the support of Diamond Light Source (UK). Time-of-flight neutron diffraction work was carried out with the support of ISIS Spallation Source (UK). We thank C. Tang, S. Thompson, J. Parker and P. Adamson for assistance on Beamline I11 (Diamond Light Source) and R. Smith for assistance on POLARIS (ISIS). M.J.R. thanks the Royal Society for the award of a Research Professorship.

Author information

Authors and Affiliations

Authors

Contributions

M.J.R. and J.B.C. developed the concept for the study with input from J.F.S.; W.X. performed initial exploratory work with supervision from J.F.S.; J.F.S. designed and performed the remaining experiments, with the exceptions of DC conductivity measurement by S.N.S. and TEM work performed by K.D. and M.Z.; J.F.S. and M.J.R. wrote the first draft, which J.F.S. then expanded. All authors discussed the results and further developed the manuscript.

Corresponding authors

Correspondence to John B. Claridge or Matthew J. Rosseinsky.

Ethics declarations

Competing interests

A patent application covering this work has been filed by Ceres Intellectual Property Company Limited (UK patent application no. GB1421069.4, International patent application no. PCT/GB2015/053400) that names M.J.R., J.B.C., J.F.S. and W.X. as inventors.

Supplementary information

Supplementary Information

Supplementary Figures 1–18, Supplementary Tables 1–4, Supplementary Notes 1–8, Supplementary References. (PDF 1874 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Xu, W., Zanella, M. et al. Self-assembled dynamic perovskite composite cathodes for intermediate temperature solid oxide fuel cells. Nat Energy 2, 16214 (2017). https://doi.org/10.1038/nenergy.2016.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2016.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing