Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing

Abstract

Distinct and evolutionarily conserved signal-transduction cascades mediate the survival or death of cells during development. The c-Jun amino-terminal kinases (JNKs) of the mitogen-activated protein kinase superfamily are involved in apoptotic signalling in various cultured cells1. However, the role of the JNK pathway in development is less well understood. In Drosophila, Decapentaplegic (Dpp; a homologue of transforming growth factor-β) and Wingless (Wg; a Wnt homologue) proteins are secretory morphogens that act cooperatively to induce formation of the proximodistal axis of appendages2,3,4,5,6,7. Here we show that either decreased Dpp signalling in the distal wing cells or increased Dpp signalling in the proximal wing cells causes apoptosis. Inappropriate levels of Dpp signalling lead to aberrant morphogenesis in the respective wing zones, and these apoptotic zones are also determined by the strength of the Wg signal. Our results indicate that distortion of the positional information determined by Dpp and Wg signalling gradients leads to activation of the JNK apoptotic pathway, and the consequent induction of cell death thereby maintains normal morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction of the DJNK and Dpp/Wg–omb pathways in the wing disc.
Figure 2: Interaction of the DJNK and Dpp pathways in wing formation.
Figure 3: Cell death in the wing disc.
Figure 4: Increased Dpp signalling induces apoptosis in the proximal wing.

Similar content being viewed by others

References

  1. Ip, Y. T. & Davis, R. J. Signal transduction by the c-Jun N-terminal kinase (JNK)—from inflammation to development. Curr. Opin. Cell Biol. 10, 205–219 (1998).

    Article  CAS  Google Scholar 

  2. Campbell, G., Weaver, T. & Tomlinson, A. Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell 74, 1113–1123 (1993).

    Article  CAS  Google Scholar 

  3. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of Wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  Google Scholar 

  4. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  Google Scholar 

  5. Lecuit, T. et al. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 381, 387–393 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Neumann, C. J. & Cohen, S. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development, 124, 871–880 (1997).

    CAS  Google Scholar 

  7. Neumann, C. J. & Cohen, S. Morphogens and pattern formation. BioEssays 19, 721–729 (1997).

    Article  CAS  Google Scholar 

  8. Noselli, S. JNK signalling and morphogenesis in Drosophila. Trends Genet. 14, 33–38 (1998).

    Article  CAS  Google Scholar 

  9. Goberdohan, D. C. I. & Wilson, C. JNK, cytoskeletal regulator and stress response kinase? A Drosophila perspective. BioEssays 20, 1009–1019 (1998).

    Article  Google Scholar 

  10. Segal, D. & Gelbart, W. M. Shortvein, a new component of the decapentaplegic gene complex in Drosophila melanogaster. Genetics 109, 119–143 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Terracol, R. & Lengyel, J. A. The thick veins gene of Drosophila is required for dorsoventral polarity of the embryo. Genetics 138, 165–178 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Riesgo-Escovar, J. R. & Hafen, E. Common and distinct roles of Dfos and Djun during Drosophila development. Science 278, 669–672 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Martín-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998).

    Article  Google Scholar 

  14. Grimm, S. & Pflugfelder, G. O. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271, 1601–1604 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Milán, M., Campuzano, S. & García-Bellido, A. Developmental parameters of cell death in the wing disc of Drosophila. Proc. Natl Acad. Sci. USA 94, 5691–5696 (1997).

    Article  ADS  Google Scholar 

  16. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319–329 (1998).

    Article  CAS  Google Scholar 

  17. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  Google Scholar 

  18. Hogan, B. L. M. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594 (1996).

    Article  CAS  Google Scholar 

  19. Adachi-Yamada, T. et al. p38 mitogen-activated protein kinase can be involved in transforming growth factor-β superfamily signal transduction in Drosophila wing morphogenesis. Mol. Cell. Biol. 19, 2322–2329 (1999).

    Article  CAS  Google Scholar 

  20. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotype. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  21. Spencer, F. A., Hoffman, F. M. & Gelbart, W. M. Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster. Cell 28, 451–461 (1982).

    Article  CAS  Google Scholar 

  22. Couso, J. P., Bate, M. & Martínez-Arias, A. Awingless -dependent polar coordinate system in Drosophila imaginal discs. Science 259, 484–489 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Penton, A. et al. Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78, 239–250 (1994).

    Article  CAS  Google Scholar 

  24. de Celis, J. F. Expression and function of decapentaplegic and thick veins during the differentiation of the veins in the Drosophila wing. Development 124, 1007–1018 (1997).

    CAS  PubMed  Google Scholar 

  25. Holland, P. M., Suzanne, M., Campbell, J. S., Noselli, S. & Cooper, J. A. MKK7 is a stress-activated mitogen-activated protein kinase kinase functionally related to hemipterous. J. Biol. Chem. 272, 24994–24998 (1997).

    Article  CAS  Google Scholar 

  26. Masucci, J. D., Miltenberger, R. J. & Hoffmann, F. M. Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal discs is regulated by 3′-cis regulatory elements. Genes Dev. 4, 2011–2023 (1990).

    Article  CAS  Google Scholar 

  27. Ito, K., Awano, W., Suzuki, K., Hiromi, Y. & Yamamoto, D. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurons and glial cells. Development 124, 761–771 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Basler, K. Ekstrom, W. M. Gelbart, Y. Hiromi, Y. H. Inoue, T. Kadowaki, K. Matthews, M. Nakamura, S. Noselli, H. Okano, N. Perrimon, G. O. Pflugfelder, G. Struhl, K. Takahashi, D. Yamamoto and S. Yoshikawa for materials; and K. W. Cho, S. Goto, A. Kuroiwa, M. Lamphier, E.Nishida, M. B. O'Connor, T. Tabata and Y. Tomoyasu for advice on the manuscript. Supported by grants from The Award of Tokai Scholarship Foundation, The Kurata Foundation, The Ministry of Education, Science, Sports and Culture of Japan, and Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Adachi-Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y. et al. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400, 166–169 (1999). https://doi.org/10.1038/22112

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22112

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing