Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human-induced erosion has offset one-third of carbon emissions from land cover change

Subjects

Abstract

Anthropogenic land cover change (ALCC) is an important carbon (C) loss mechanism1,2,3, but current methods do not consider the role of accelerated soil organic C erosion and its burial in sediments in their assessments of net soil–atmosphere C exchange. Using a comprehensive global database and parsimonious modelling, we evaluate the impact of anthropogenic soil erosion on C fluxes between the Earth’s surface and atmosphere from the onset of agriculture to the present day. We find that agricultural erosion represents a very large and transient perturbation to the C cycle and has induced a cumulative net uptake of 78 ± 22 Pg C in terrestrial ecosystems during the period 6000 BC to AD 2015. This erosion-induced soil organic C sink is estimated to have offset 37 ± 10% of previously recognized C emissions resulting from ALCC. We estimate that rates of C burial have increased by a factor of 4.6 since AD 1850. Thus, current assessments may significantly overestimate both past and future anthropogenic emissions from the land. Given that ALCC is the most uncertain component of the global C budget and that there is a strong connection between ALCC and erosion, an explicit representation of erosion and burial processes is essential to fully understand the impact of human activities on the net soil–atmosphere C exchange.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Component fluxes of the erosion-induced C budget for the period of agriculture.
Figure 2: Comparison of observed and simulated cumulative anthropogenic sediment fluxes.
Figure 3: Observed and simulated SOC profiles for 20 climate–geomorphic classes.
Figure 4: Temporal evolution of land–atmosphere C fluxes due to primary ALCC emissions and erosion/burial.

Similar content being viewed by others

References

  1. Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Article  CAS  Google Scholar 

  2. Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011).

    Article  Google Scholar 

  3. Pongratz, J., Reick, C. H., Raddatz, T. & Claussen, M. Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob. Biogeochem. Cycles 23, GB4001 (2009).

    Article  Google Scholar 

  4. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  CAS  Google Scholar 

  5. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  CAS  Google Scholar 

  6. Burdige, D. J. Burial of terrestrial organic matter in marine sediments: a re-assessment. Glob. Biogeochem. Cycles 19, GB4011 (2005).

    Article  Google Scholar 

  7. Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  CAS  Google Scholar 

  8. Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    Article  CAS  Google Scholar 

  9. Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

    Article  CAS  Google Scholar 

  10. Cerdan, O. et al. Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology 122, 167–177 (2010).

    Article  Google Scholar 

  11. Bauska, T. K. et al. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nat. Geosci. 8, 383–387 (2015).

    Article  CAS  Google Scholar 

  12. Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2016).

    Article  CAS  Google Scholar 

  13. Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    Article  CAS  Google Scholar 

  14. Van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).

    Article  CAS  Google Scholar 

  15. Quine, T. A. & Van Oost, K. Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories. Glob. Change Biol. 13, 2610–2625 (2007).

    Article  Google Scholar 

  16. Lal, R. Soil erosion and the global carbon budget. Environ. Int. 29, 437–450 (2003).

    Article  CAS  Google Scholar 

  17. Berhe, A. A., Harte, J., Harden, J. W. & Torn, M. S. The significance of the erosion-induced terrestrial carbon sink. Bioscience 57, 337–346 (2007).

    Article  Google Scholar 

  18. Harden, J. W. et al. Dynamic replacement and loss of soil carbon on eroding cropland. Glob. Biogeochem. Cycles 13, 885–901 (1999).

    Article  CAS  Google Scholar 

  19. Bakker, M., Govers, G., Jones, R. & Rounsevell, M. A. The effect of soil erosion on Europe’s crop yields. Ecosystems 10, 1209–1219 (2007).

    Article  Google Scholar 

  20. Berhe, A. A., Harden, J. W., Torn, M. S. & Harte, J. Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions. J. Geophys. Res. 113, G04039 (2008).

    Article  Google Scholar 

  21. Li, Y. et al. Sustained high magnitude erosional forcing generates an organic carbon sink: test and implications in the Loess Plateau, China. Earth Planet. Sci. Lett. 411, 281–289 (2015).

    Article  CAS  Google Scholar 

  22. Smith, S. V. et al. Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed. Ecol. Appl. 17, 1379–1387 (2007).

    Article  CAS  Google Scholar 

  23. Van Hemelryck, H., Fiener, P., Van Oost, K., Govers, G. & Merckx, R. The effect of soil redistribution on soil organic carbon: an experimental study. Biogeosciences 7, 3971–3986 (2010).

    Article  CAS  Google Scholar 

  24. Jacinthe, P. A., Lal, R., Owens, L. B. & Hothem, D. L. Transport of labile carbon in runoff as affected by land use and rainfall characteristics. Soil Tillage Res. 77, 111–123 (2004).

    Article  Google Scholar 

  25. Wang, Z. et al. The fate of buried organic carbon in colluvial soils: a long-term perspective. Biogeosciences 11, 873–883 (2014).

    Article  CAS  Google Scholar 

  26. Wang, Z., Van Oost, K. & Govers, G. Predicting the long-term fate of buried organic carbon in colluvial soils. Glob. Biogeochem. Cycles 29, 65–79 (2015).

    Article  Google Scholar 

  27. Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil–atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).

    Article  CAS  Google Scholar 

  28. Hoffmann, T., Schlummer, M., Notebaert, B., Verstraeten, G. & Korup, O. Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe. Glob. Biogeochem. Cycles 27, 828–835 (2013).

    Article  CAS  Google Scholar 

  29. Omengo, F. O., Geeraert, N., Bouillon, S. & Govers, G. Deposition and fate of organic carbon in floodplains along a tropical semiarid lowland river (Tana River, Kenya). J. Geophys. Res. 121, 1131–1143 (2016).

    Article  CAS  Google Scholar 

  30. Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem. Cycles 12, 231–257 (1998).

    Article  CAS  Google Scholar 

  31. Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).

    Article  Google Scholar 

  32. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  CAS  Google Scholar 

  33. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Ann. Rev. Mar. Sci. 4, 401–423 (2012).

    Article  Google Scholar 

  34. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article  CAS  Google Scholar 

  35. Zinn, Y. L., Lal, R., Bigham, J. M. & Resck, D. V. S. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: Texture and mineralogy. Soil Sci. Soc. Am. J. 71, 1204–1214 (2007).

    Article  CAS  Google Scholar 

  36. Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article  Google Scholar 

  37. Feller, C. & Beare, M. H. Physical control of soil organic matter dynamics in the tropics. Geoderma 79, 69–116 (1997).

    Article  CAS  Google Scholar 

  38. 2007 National Resources Inventory Summary Report (Natural Resources Conservation Service, Center for Survey Statistics and Methodology, 2009).

  39. Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  40. Klein Goldewijk, K., Beusen, A. & Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 20, 565–573 (2010).

    Article  Google Scholar 

  41. Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 28, 3016–3034 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Z.W. is funded by BELSPO (IUAP programme, contract: P7-24). J.O.K. is supported by the European Research Council (313797 COEVOLVE). K.V.O. is a Senior Research Associate of the Fonds de la Recherche Scientifique (FNRS), Belgium. Support for this project was provided by the FNRS (convention number 2.4590.12). We thank S. Bouillon, H. Maclean, T. A. Quine and A. Stevens for comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and K.V.O. conceived the research; Z.W. performed the analysis; Z.W. and K.V.O. co-wrote the paper. All authors assisted in the interpretation of the results and commented on the manuscript.

Corresponding author

Correspondence to Zhengang Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Hoffmann, T., Six, J. et al. Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Clim Change 7, 345–349 (2017). https://doi.org/10.1038/nclimate3263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3263

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology