Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Globin gene deletion in HPFH, δ°β° thalassaemia and Hb Lepore disease

Abstract

THE thalassaemias are a group of inherited disorders characterised by the defective production of either α (α thalassaemias) or non-α (β and δ°β° thalassaemias) globin chains of haemoglobins (Hb)1. In β thalassaemias the decreased synthesis of β-globin chains is only partially compensated by the increased production of γ chains, which probably reflects2 the massive hypertrophy of the erythron with selective survival of the clones of adult haemoglobin F-producing cells (F cells3,4). The situation is very different in other genetic disorders of the non-α gene cluster, known as δ°β° thalassaemias and Negro type of hereditary persistence of fetal haemoglobin (HPFH). In these two forms there is a genuine increase of γ-chain production, as shown by the high level of HbF found in heterozygotes. Although a clearcut distinction from both the clinical and haematological point of view cannot be traced between these two forms, the HPFH differs from the δ°β° thalassaemia in having a higher degree of γ-chain synthesis and a more homogeneous distribution of HbF within red cells. Recently, it has been possible to carry out gene analysis on DNA prepared from β°, δ°β° thalassaemic and HPFH patients. The β-globin gene is present in β° thalassaemias5–9, but in δ°β° thalassaemias and HPFH a major deletion, possibly involving both δ and β genes, has been demonstrated by hybridisation studies8,10–12. To characterise the molecular defect in these genetic disorders more precisely, we have hybridised DNA from homozygotes with HPFH, δ°β° thalassaemia and Hb Lepore disease (in which non-α-chains are a δβ fusion product13). For this we used a pure full-size cDNAβ probe and specific 5′ end and 3′ end cDNA fragments (we designate as 5′ end cDNA the portion corresponding to the 5′ end of the mRNA; the same for the 3′ end). Our results, reported here, show that in contrast to HPFH, where a complete δ and β gene deletion occurs, in δ°β° thalassaemia a 5′-end fragment of the δ gene is present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weatherall, D. J. & Clegg, J. B. The Thalassemia Syndromes 2nd edn (Blackwell, Oxford, 1972).

    Google Scholar 

  2. Weatherall, D. J. Congenital Disorders of Erythropoiesis (Ciba Symp., North-Holland, Amsterdam, 1976).

    Google Scholar 

  3. Boyer, S. H., Belding, T. K., Margolet, L. & Noyes, A. N. Science 188, 361–363 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wood, W. G., Stamatoyannopoulos, G., Lim, G. & Nute, P. E. Blood 46, 671–682 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Ottolenghi, S. et al. Proc. natn. Acad. Sci. U.S.A. 72, 2294–2299 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Kan, Y. W., Holland, J. P., Dozy, A. M. & Varmus, H. E. Proc. natn. Acad. Sci. U.S.A. 72, 5140–5144 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Tolstoshev, P. et al. Nature 259, 95–98 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Ramirez, F. et al. Nature 263, 471–475 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Comi, P. et al. Eur. J. Biochem. 79, 617–622 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Kan, Y. W., Holland, J. P., Dozy, A. M., Charache, S. & Kazazian, H. H. Nature 258, 162–163 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Forget, B. G. et al. Cell 7, 323–329 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Ottolenghi, S. et al. Cell 9, 71–80 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. Baglioni, C. Proc. natn. Acad. Sci. U.S.A. 48, 1880–1886 (1962).

    Article  ADS  CAS  Google Scholar 

  14. Bishop, J. O. & Freeman, K. B. Cold Spring Harb. Symp. quant. Biol. 38, 707–716 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Williamson, R. Br. med. Bull. 32, 246–252 (1976).

    Article  CAS  PubMed  Google Scholar 

  16. Sharp, P. A., Sugden, B. & Sambrook, J. Biochemistry 12, 3055–3063 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Hell, A., Birnie, G. D., Slimming, T. K. & Paul, J. Analyt. Biochem. 48, 369–377 (1972).

    Article  CAS  PubMed  Google Scholar 

  18. Tibbets, C., Johansson, K. & Philipson, L. J. Virol. 12, 218–225 (1973).

    Article  Google Scholar 

  19. Acquaye, C. T. A., Oldham, J. H. & Konotey-Ahulu, F. I. D. Lancet i, 796–797 (1977).

    Article  Google Scholar 

  20. Orkin, S. H. J. biol. Chem. 253, 12–15 (1978).

    CAS  PubMed  Google Scholar 

  21. Marotta, C. A., Wilson, J. T., Forget, B. G. & Weissman, S. M. J. biol. Chem. 252, 5040–5053 (1977).

    CAS  PubMed  Google Scholar 

  22. Old, J. et al. Cell 8, 13–18 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Orkin, S. et al. New Engl. J. Med. 299, 166–174 (1978).

    Article  CAS  PubMed  Google Scholar 

  24. Wilson, J. T., DeRiel, J. K., Forget, B. G., Marotta, C. A. & Weissman, S. M. Nucleic Acids Res. 4, 2353–2368 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baglioni, C. Biochim. biophys. Acta 97, 37–46 (1965).

    Article  CAS  PubMed  Google Scholar 

  26. Labie, D., Schroeder, W. A. & Huisman, T. H. J. Biochim. biophys. Acta 127, 428–437 (1966).

    Article  CAS  PubMed  Google Scholar 

  27. Efstradiatis, A., Maniatis, T., Kafatos, F. C., Jeffrey, A. & Vournakis, J. N. Cell 4, 367–378 (1975).

    Article  Google Scholar 

  28. Little, P. et al. Nature 273, 640–643 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Flavell, R. A., Kooter, J. M., DeBoer, E., Little, P. F. R. & Williamson, R. Cell 15, 25–38 (1978).

    Article  CAS  PubMed  Google Scholar 

  30. Britten, R. J., Graham, D. E. & Neufeld, B. R. Meth. Enzym. 29, part E 363–418 (1974).

    Article  CAS  PubMed  Google Scholar 

  31. Gianni, A. M. et al. Nature 274, 610–612 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Jeffreys, A. J. & Flavell, R. A. Cell 12, 429–439 (1977).

    Article  CAS  PubMed  Google Scholar 

  33. Jeffreys, A. J. & Flavell, R. A. Cell 12, 1097–1108 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. Mears, J. G. et al. Proc. natn. Acad. Sci. U.S.A. 75, 1222–1226 (1978).

    Article  ADS  CAS  Google Scholar 

  35. Huisman, T. H. J., Wrightstone, R. N., Wilson, J. B., Schroeder, W. A. & Kendall, A. G. Archs Biochem. Biophys. 153, 850–853 (1972).

    Article  CAS  Google Scholar 

  36. Smith, D. H., Clegg, J. B., Weatherall, D. J. & Gilles, H. M. Nature new Biol. 246, 184–186 (1973).

    CAS  Google Scholar 

  37. Huisman, T. H. J. et al. Ann. N. Y. Acad. Sci. 232, 107–124 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Wood, W. G., Clegg, J. B. & Weatherall, D. J. Prog. Haemat. 43–90 (1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OTTOLENGHI, S., GIGLIONI, B., COMI, P. et al. Globin gene deletion in HPFH, δ°β° thalassaemia and Hb Lepore disease. Nature 278, 654–657 (1979). https://doi.org/10.1038/278654a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278654a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing