Skip to main content
Log in

Systematic Analysis of Protein–Protein and Gene–Environment Interactions to Decipher the Cognitive Mechanisms of Autism Spectrum Disorder

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD), a heterogeneous neurodevelopmental disorder resulting from both genetic and environmental risk factors, is manifested by deficits in cognitive function. Elucidating the cognitive disorder-relevant biological mechanisms may open up promising therapeutic approaches. In this work, we mined ASD cognitive phenotype proteins to construct and analyze protein–protein and gene–environment interaction networks. Incorporating the protein–protein interaction (PPI), human cognition proteins, and connections of autism-cognition proteins enabled us to generate an autism-cognition network (ACN). With the topological analysis of ACN, important proteins, highly clustered modules, and 3-node motifs were identified. Moreover, the impact of environmental exposures in cognitive impairment was investigated through chemicals that target the cognition-related proteins. Functional enrichment analysis of the ACN-associated modules and chemical targets revealed biological processes involved in the cognitive deficits of ASD. Among the 17 identified hub-bottlenecks in the ACN, PSD-95 was recognized as an important protein through analyzing the module and motif interactions. PSD-95 and its interacting partners constructed a cognitive-specific module. This hub-bottleneck interacted with the 89 cognition-related 3-node motifs. The identification of gene–environment interactions indicated that most of the cognitive-related proteins interact with bisphenol A (BPA) and valproic acid (VPA). Moreover, we detected significant expression changes of 56 cognitive-specific genes using four ASD microarray datasets in the GEO database, including GSE28521, GSE26415, GSE18123 and GSE29691. Our outcomes suggest future endeavors for dissecting the PSD-95 function in ASD and evaluating the various environmental conditions to discover possible mechanisms of the different levels of cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abraham JR, Szoko N, Barnard J, Rubin RA, Schlatzer D, Lundberg K et al (2019) Proteomic investigations of autism brain identify known and novel pathogenetic processes. Sci Rep 9(1):1–11

    CAS  Google Scholar 

  • Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA et al (2013) SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism 4(1):36

    PubMed  PubMed Central  Google Scholar 

  • Abrahams BS, Geschwind DH (2010) Connecting genes to brain in the autism spectrum disorders. Arch Neurol 67(4):395–399

    PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25(1):25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1):2

    PubMed  PubMed Central  Google Scholar 

  • Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z et al (2018) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ 67(6):1

    PubMed  PubMed Central  Google Scholar 

  • Berglund L, Björling E, Oksvold P, Fagerberg L, Asplund A, Szigyarto CA-K et al (2008) A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol Cell Proteomics 7(10):2019–2027

    CAS  PubMed  Google Scholar 

  • Bibb JA, Mayford MR, Tsien JZ, Alberini CM (2010) Cognition enhancement strategies. J Neurosci 30(45):14987–14992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563

    CAS  PubMed  Google Scholar 

  • Buffington SA, Huang W, Costa-Mattioli M (2014) Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci 37:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter C (2019) Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int. https://doi.org/10.1016/j.neuint.2019.03.007

    Article  PubMed  Google Scholar 

  • Chakrabarti B, Dudbridge F, Kent L, Wheelwright S, Hill-Cawthorne G, Allison C et al (2009) Genes related to sex steroids, neural growth, and social–emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Research 2(3):157–177

    CAS  PubMed  Google Scholar 

  • Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, Vestergaard M (2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA 309(16):1696–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coley AA, Gao W-J (2018) PSD95: a synaptic protein implicated in schizophrenia or autism? Prog Neuropsychopharmacol Biol Psychiatry 82:187–194

    CAS  PubMed  Google Scholar 

  • Coley AA, Gao W-J (2019) PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep 9(1):1–13

    Google Scholar 

  • Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL et al (2015) The comparative toxicogenomics database’s 10th year anniversary: update 2015. Nucleic Acids Res 43(D1):D914–D920

    CAS  PubMed  Google Scholar 

  • De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515(7526):209–215

    PubMed  PubMed Central  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feero WG, Guttmacher AE, Mefford HC, Batshaw ML, Hoffman EP (2012) Genomics, intellectual disability, and autism. N Engl J Med 366(8):733–743

    Google Scholar 

  • Fombonne E (1999) The epidemiology of autism: a review. Psychol Med 29(04):769–786

    CAS  PubMed  Google Scholar 

  • Fombonne E (2003) Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 33(4):365–382

    PubMed  Google Scholar 

  • Fuentealba CR, Fiedler JL, Peralta FA, Avalos AM, Aguayo FI, Morgado-Gallardo KP, Aliaga EE (2019) Region-specific reduction of BDNF protein and transcripts in the hippocampus of juvenile rats prenatally treated with sodium valproate. Front Mol Neurosci. https://doi.org/10.3389/fnmol.2019.00261

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Contreras R, Wood TK, Tomás M (2019) Quorum network (sensing/quenching) of multidrug-resistant pathogens. Front Cell Infect Microbiol 9:80

    PubMed  PubMed Central  Google Scholar 

  • Grabrucker AM (2012) Environmental factors in autism. Front. Psychiatry 3:118

    Google Scholar 

  • Guang S, Pang N, Deng X, Yang L, He F, Wu L et al (2018) Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci 12:470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong EJ, West AE, Greenberg ME (2005) Transcriptional control of cognitive development. Curr Opin Neurobiol 15(1):21–28

    CAS  PubMed  Google Scholar 

  • Jeong J, Pandey S, Li Y, Badger JD, Lu W, Roche KW (2019) PSD-95 binding dynamically regulates NLGN1 trafficking and function. Proc Natl Acad Sci 116(24):12035–12044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaizuka T, Takumi T (2018) Postsynaptic density proteins and their involvement in neurodevelopmental disorders. J Biochem 163(6):447–455

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • King BL, Davis AP, Rosenstein MC, Wiegers TC, Mattingly CJ (2012) Ranking transitive chemical-disease inferences using local network topology in the comparative toxicogenomics database. PLoS ONE 7(11):e46524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-L, Ng S (2009) Biological data mining in protein interaction networks. IGI Global, Pennsylvania

    Google Scholar 

  • Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Neurotrophic factors. Springer, New York, pp 223–250

    Google Scholar 

  • Mizuo K, Narita M, Miyagawa K, Suzuki T (2010) Effects of prenatal and neonatal exposure to bisphenol A on the development of the central nervous system. Biomol Ther 18(2):125–134

    CAS  Google Scholar 

  • Nafis S, Kalaiarasan P, Brojen Singh R, Husain M, Bamezai RN (2015) Apoptosis regulatory protein–protein interaction demonstrates hierarchical scale-free fractal network. Brief Bioinform 16(4):675–699

    PubMed  Google Scholar 

  • Nithianantharajah J, Barkus C, Murphy M, Hannan AJ (2008) Gene–environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington’s disease transgenic mice. Neurobiol Dis 29(3):490–504

    CAS  PubMed  Google Scholar 

  • Pirooznia M, Nagarajan V, Deng Y (2007) GeneVenn-A web application for comparing gene lists using Venn diagrams. Bioinformation 1(10):420

    PubMed  PubMed Central  Google Scholar 

  • Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ (2015) DISEASES: text mining and data integration of disease–gene associations. Methods 74:83–89

    CAS  PubMed  Google Scholar 

  • Rauh VA, Margolis AE (2016) Research review: environmental exposures, neurodevelopment, and child mental health–new paradigms for the study of brain and behavioral effects. J Child Psychol Psychiatry 57(7):775–793

    PubMed  PubMed Central  Google Scholar 

  • Ray M, Ruan J, Zhang W (2008) Variations in the transcriptome of Alzheimer’s disease reveal molecular networks involved in cardiovascular diseases. Genome Biol 9(10):R148

    PubMed  PubMed Central  Google Scholar 

  • Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA (2011) A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 35(6):1363–1396

    CAS  PubMed  Google Scholar 

  • Rossignol DA, Genuis SJ, Frye RE (2014) Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 4(2):e360–e360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safari-Alighiarloo N, Taghizadeh M, Tabatabaei S, Shahsavari S, Namaki S, Khodakarim S, Rezaei-Tavirani M (2016) Identification of new key genes for type 1 diabetes through construction and analysis of protein-protein interaction networks based on blood and pancreatic islet transcriptomes. J Diabetes 9:764–777

    PubMed  Google Scholar 

  • Safari-Alighiarloo N, Taghizadeh M, Tabatabaei SM, Shahsavari S, Namaki S, Khodakarim S, Rezaei-Tavirani M (2017) Identification of new key genes for type 1 diabetes through construction and analysis of protein–protein interaction networks based on blood and pancreatic islet transcriptomes. J Diabetes 9(8):764–777

    CAS  PubMed  Google Scholar 

  • Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M et al (2010) GeneCards Version 3: the human gene integrator. Database. https://doi.org/10.1093/database/baq020

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci 5(12):917–930

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847

    CAS  PubMed  Google Scholar 

  • Silva AJ (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 54(1):224–237

    CAS  PubMed  Google Scholar 

  • Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911

    PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J et al (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    CAS  PubMed  Google Scholar 

  • Thongkorn S, Kanlayaprasit S, Jindatip D, Tencomnao T, Hu VW, Sarachana T (2019) Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Sci Rep 9(1):1–14

    CAS  Google Scholar 

  • Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22(9):1152–1153

    CAS  PubMed  Google Scholar 

  • Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. https://doi.org/10.1371/journal.pbio.0050052

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong CT, Wais J, Crawford DA (2015) Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 42(10):2742–2760

    PubMed  Google Scholar 

  • Yang C, Li J, Wu Q, Yang X, Huang AY, Zhang J et al (2018) AutismKB 2.0: a knowledgebase for the genetic evidence of autism spectrum disorder. Database. https://doi.org/10.1093/database/bay106

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon CY, Steffen LM, Gross MD, Launer LJ, Odegaard A, Reiner A et al (2017) Circulating cellular adhesion molecules and cognitive function: the coronary artery risk development in young adults study. Front Cardiovasc Med 4:37

    PubMed  PubMed Central  Google Scholar 

  • Zhu F, Collins MO, Harmse J, Choudhary JS, Grant SG, Komiyama NH (2020) Cell-type-specific visualisation and biochemical isolation of endogenous synaptic proteins in mice. Eur J Neurosci 51(3):793–805

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Rezaei-Tavirani.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 5433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, M., Rezaei-Tavirani, M., Zali, A. et al. Systematic Analysis of Protein–Protein and Gene–Environment Interactions to Decipher the Cognitive Mechanisms of Autism Spectrum Disorder. Cell Mol Neurobiol 42, 1091–1103 (2022). https://doi.org/10.1007/s10571-020-00998-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00998-w

Keywords

Navigation