Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 29, 2019

Chemical and textural relations of britholite- and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina

  • Melanie Lorenz EMAIL logo , Uwe Altenberger , Robert B. Trumbull , Raúl Lira , Mónica López de Luchi , Christina Günter and Sascha Eidner
From the journal American Mineralogist

Abstract

Britholite group minerals (REE,Ca)5[(Si,P)O4]3(OH,F) are widespread rare-earth minerals in alkaline rocks and their associated metasomatic zones, where they usually are minor accessory phases. An exception is the REE deposit Rodeo de los Molles, Central Argentina, where fluorbritholite-(Ce) (FBri) is the main carrier of REE and is closely intergrown with fluorapatite (FAp). These minerals reach an abundance of locally up to 75 modal% (FBri) and 20 modal% (FAp) in the vein mineralizations. The Rodeo de los Molles deposit is hosted by a fenitized monzogranite of the Middle Devonian Las Chacras-Potrerillos batholith. The REE mineralization consists of fluorbritholite-(Ce), britholite-(Ce), fluorapatite, allanite-(Ce), and REE fluorcarbonates, and is associated with hydrothermal fluorite, quartz, albite, zircon, and titanite. The REE assemblage takes two forms: irregular patchy shaped REE-rich composites and discrete cross-cutting veins. The irregular composites are more common, but here fluorbritholite-(Ce) is mostly replaced by REE carbonates. The vein mineralization has more abundant and better-preserved britholite phases.

The majority of britholite grains at Rodeo de los Molles are hydrothermally altered, and alteration is strongly enhanced by metamictization, which is indicated by darkening of the mineral, loss of birefringence, porosity, and volume changes leading to polygonal cracks in and around altered grains. A detailed electron microprobe study of apatite-britholite minerals from Rodeo de los Molles revealed compositional variations in fluorapatite and fluorbritholite-(Ce) consistent with the coupled substitution of REE3+ + Si4+ = Ca2+ + P5+ and a compositional gap of ~4 apfu between the two phases, which we interpret as a miscibility gap. Micrometer-scale intergrowths of fluorapatite in fluorbritholite-(Ce) minerals and vice versa are chemically characterized here for the first time and interpreted as exsolution textures that formed during cooling below the proposed solvus.

Acknowledgments

We are grateful to Nicolas Viñas from Michelloti e Hijos, Córdoba, for accompanying us in the field and helping with drill-core samples. We thank our reviewers Ray Macdonald and Kathy Ehrig as well as the associated Editor Dan Harlov for their comments and suggestions, which helped to improve this manuscript.

  1. Funding

    The study is implemented in the framework of the international research training group StRATEGy (Surface Processes, Tectonics and Georesources: The Andean foreland basin of Argentina, IGK-2018) and was done in cooperation with the CONICET in Argentina. Our research was funded by the Deutsche Forschun-gsgemeinschaft (DFG, grant STR 373/34-1) and the Brandenburg Ministry of Sciences, Research and Cultural Affairs, Germany.

References cited

Ahijado, A., Casillas, R., Nagy, G., and Fernández, C. (2005) Sr-rich minerals in a carbonatite skarn, Fuerteventura, Canary Islands (Spain). Mineralogy and Petrology, 84(1-2), 107–127.10.1007/s00710-005-0074-8Search in Google Scholar

Arden, K.M., and Halden, N.M. (1999) Crystallization and alteration history of britholite in rare-earth-element-enriched pegmatitic segregations associated with the Eden Lake Complex, Manitoba, Canada. The Canadian Mineralogist, 37(5), 1239–1253.Search in Google Scholar

Barrat, J.A., Zanda, B., Moynier, F., Bollinger, C., Liorzou, C., and Bayon, G. (2012) Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83, 79–92.10.1016/j.gca.2011.12.011Search in Google Scholar

Brugger, J., Ogierman, J., Pring, A., Waldron, H., and Kolitsch, U. (2006) Origin of the secondary REE-minerals at the Paratoo copper deposit near Yunta, South Australia. Mineralogical Magazine, 70(6), 609–627.10.1180/0026461067060361Search in Google Scholar

Carroll, J.D., and Chang, J.-J. (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283–319.10.1007/BF02310791Search in Google Scholar

Della Ventura, G., Williams, C.T., Cabella, R., Oberti, R., Caprilli, E., and Bellatreccia, F. (1999) Britholite-hellandite intergrowths and associated REE-minerals from the alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy); petrological implications bearing on REE mobility in volcanic systems. European Journal of Mineralogy, 11(5), 843–854.10.1127/ejm/11/5/0843Search in Google Scholar

Ferguson, M., Kamenetsky, V., Agangi, A., Kamenetsky, M., Meffre, S., and Ehrig, K. (2016) Iron and REE-bearing mineral assemblages in the rocks hosting the Olympic Dam and Wirrda Well IOCG deposits. Australian Earth Sciences Convention, 1.Search in Google Scholar

Frost, R.L., and Dickfos, M.J. (2007) Raman spectroscopy of halogen-containing carbonates. Journal of Raman Spectroscopy, 38(11), 1516–1522.10.1002/jrs.1806Search in Google Scholar

Gay, H.D., and Lira, R. (1984) Mineralización torífera y de tierras raras en el extremo septentrional del batolito de Las Chacras, San Luis. IX Congreso Geológico Argentino, 7, 342–356.Search in Google Scholar

Gu, J., Chao, G.Y., and Tang, S. (1994) A new mineral–fluorbritholite-(Ce). Journal of Wuhan University Technology, 9(3), 9–14.Search in Google Scholar

Harshman, R.A. (1970). PARAFAC. UCLA Working Papers in Phonetics 16, 1–84.Search in Google Scholar

Holtstam, D., and Andersson, U.B. (2007) The REE minerals of the Bastnas-type deposits, south-central Sweden. Canadian Mineralogist, 45(5), 1073–1114.10.2113/gscanmin.45.5.1073Search in Google Scholar

Lafuente, B., Downs, R.T., Yang, H., Stone, N., Armbruster, T., and Danisi, R.M. (2015) Highlights in mineralogical crystallography. W. De Gruyter, Berlin, 1–30.Search in Google Scholar

Lira, R., and Ripley, E.M. (1990) Fluid inclusion studies of the Rodeo de Los Molles REE and Th deposit, Las Chacras Batholith, Central Argentina. Geochimica et Cosmochimica Acta, 54, 663–671.10.1016/0016-7037(90)90362-OSearch in Google Scholar

Lira, R., and Ripley, E.M. (1991) Reply to comment on “Fluid inclusion studies of the Rodeo de Los Molles REE and Th deposit, Las Chacras Batholith, Central Argentina.” Geochimica et Cosmochimica Acta, 55, 2065–2066.10.1016/0016-7037(91)90043-5Search in Google Scholar

Lira, R., and Ripley, E.M. (1992) Hydrothermal alteration and REE-Th mineralization at the Rodeo de Los Molles deposit, Las Chacras batholith, central Argentina. Contributions to Mineralogy and Petrology, 110(2-3), 370–386.10.1007/BF00310751Search in Google Scholar

Lira, R., Viñas, N.A., Ripley, E.M., and Barbieri, M. (1999) El yacimiento de tierras raras, torio y uranio Rodeo de los Molles, San Luis. Recursos Minerales de la República Argentina: Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Anales, 35, 987–997.Search in Google Scholar

Livshits, T.S. (2006) Britholites as natural analogues of actinide matrices: Resistance to radiation damage. Geology of Ore Deposits, 48(5), 357–368.10.1134/S1075701506050023Search in Google Scholar

López de Luchi, M.G.L., Siegesmund, S., Wemmer, K., and Nolte, N. (2017) Petrogenesis of the postcollisional Middle Devonian monzonitic to granitic magmatism of the Sierra de San Luis, Argentina. Lithos, 288, 191–213.10.1016/j.lithos.2017.05.018Search in Google Scholar

Macdonald, R., Bagiński, B., Dzierżanowski, P., and Jokubauskas, P. (2013) Apatite-supergroup minerals in UK Palaeogene granites: composition and relationship to host-rock composition. European Journal of Mineralogy, 25(3), 461–471.10.1127/0935-1221/2013/0025-2291Search in Google Scholar

Macdonald, R., Bagiński, B., Kartashov, P.M., Zozulya, D., Dzierżanowski, P., and Jokubauskas, P. (2015) Hydrothermal alteration of a chevkinite-group mineral to a bastnäsite-(Ce)-ilmenite-columbite-(Fe) assemblage: interaction with a F-, CO2-rich fluid. Mineralogy and Petrology, 109(6), 659–678.10.1007/s00710-015-0394-2Search in Google Scholar

Melluso, L., De’Gennaro, R., Fedele, L., Franciosi, L., and Morra, V. (2012) Evidence of crystallization in residual, Cl–F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt–trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geological Magazine, 149(3), 532–550.10.1017/S0016756811000902Search in Google Scholar

Melluso, L., Guarino, V., Lustrino, M., Morra, V., and De’Gennaro, R. (2017) The REE-and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts. Mineralogical Magazine, 81(2), 217–250.10.1180/minmag.2016.080.122Search in Google Scholar

Nash, W.P. (1972) Apatite chemistry and phosphorus fugacity in a differentiated igneous intrusion. American Mineralogist, 57, 877–886.Search in Google Scholar

Oberti, R., Ottolini, L., Ventura, G.D., and Parodi, G.C. (2001) On the symmetry and crystal chemistry of britholite: New structural and microanalytical data. American Mineralogist, 86, 1066–1075.10.2138/am-2001-8-913Search in Google Scholar

Orlandi, P., Perchiazzi, N., and Mannucci, G. (1989) First occurrence of britholite-(Ce) in Italy (Monte Somma, Vesuvius). European Journal of Mineralogy, 723–725.10.1127/ejm/1/5/0723Search in Google Scholar

Ouzegane, K., Fourcade, S., Kienast, J.R., and Javoy, M. (1988) New carbonatite complexes in the Archaean In’Ouzzal nucleus (Ahaggar, Algeria): mineralogical and geochemical data. Contributions to Mineralogy and Petrology, 98(3), 277–292.10.1007/BF00375179Search in Google Scholar

Pan, Y., and Fleet, M.E. (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48, 13–49.10.1515/9781501509636-005Search in Google Scholar

Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J., and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22(2), 163–179.10.1127/0935-1221/2010/0022-2022Search in Google Scholar

Pekov, I.V., Zubkova, N.V., Chukanov, N.V., Husdal, T.A., Zadov, A.E., and Pushcharovsky, D.Y. (2011) Fluorbritholite-(Y), (Y,Ca,Ln)5[(Si,P)O43F, a new mineral of the britholite group. Neues Jahrbuch für Mineralogie, Abhan-dlungen, 188(2), 191–197.10.1127/0077-7757/2011/0200Search in Google Scholar

Piccoli, P.M., and Candela, P.A. (2002) Apatite in igneous systems. Reviews in Mineralogy and Geochemistry, 48, 255–292.10.1515/9781501509636-009Search in Google Scholar

Rakovan, J.F., and Hughes, J.M. (2000) Strontium in the apatite structure: strontian fluorapatite and belovite-(Ce). Canadian Mineralogist, 38(4), 839–845.10.2113/gscanmin.38.4.839Search in Google Scholar

Roeder, P.L., MacArthur, D., Ma, X.P., Palmer, G.R., and Mariano, A.N. (1987) Cathodoluminescence and microprobe study of rare-earth elements in apatite. American Mineralogist, 72, 801–811.Search in Google Scholar

Rønsbo, J.G. (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. American Mineralogist, 74, 896–901.Search in Google Scholar

Seydoux-Guillaume, A.M., Wirth, R., and Ingrin, J. (2007) Contrasting response of ThSiO4 and monazite to natural irradiation. European Journal of Mineralogy, 19(1), 7–14.10.1127/0935-1221/2007/0019-007Search in Google Scholar

Siegesmund, S., Steenken, A., López de Luchi, M.G., Wemmer, K., Hoffmann, A., and Mosch, S. (2004) The Las Chacras-Potrerillos batholith (Pampean Ranges, Argentina): structural evidences, emplacement and timing of the intrusion. International Journal of Earth Sciences, 93(1), 23–43.10.1007/s00531-003-0363-6Search in Google Scholar

Torró, L., Villanova, C., Castillo, M., Campeny, M., Melgarejo, J.C., and Gonçalves, A.O. (2012) Niobium and rare earth minerals from the Virulundo carbonatite, Namibe, Angola. Mineralogical Magazine, 76(2), 393–409.10.1180/minmag.2012.076.2.08Search in Google Scholar

Uher, P., Ondrejka, M., Bačík, P., Broska, I., and Konečný, P. (2015) Britholite, monazite, REE carbonates, and calcite: Products of hydrothermal alteration of allanite and apatite in A-type granite from Stupné, Western Carpathians, Slovakia. Lithos, 236, 212–225.10.1016/j.lithos.2015.09.005Search in Google Scholar

Vernon, R.H. (2004) A Practical Guide to Rock Microstructure, 594 p. Cambridge University Press.10.1017/CBO9780511807206Search in Google Scholar

Wall, F., Le Bas, J., and Srivastava, R.K. (1993) Calcite and carbocernaite exsolution and cotectic textures in a Sr, REE-rich carbonatite dyke from Rajasthan, India. Mineralogical Magazine, 57, 388, 495–513.10.1180/minmag.1993.057.388.11Search in Google Scholar

Weber, W.J., Ewing, R.C., Catlow, C.R.A., De La Rubia, T.D., Hobbs, L.W., Kinoshita, C., and Vance, E.R. (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13(6), 1434–1484.10.1557/JMR.1998.0205Search in Google Scholar

Winther, C. (1901) Britholith, a new mineral. Meddelelser om Grønland, 24, 190–196.Search in Google Scholar

Zozulya, D.R., Lyalina, L.M., and Savchenko, Y.E. (2015) Britholite ores of the Sakharjok Zr–Y–REE deposit, Kola Peninsula: Geochemistry, mineralogy, and formation stages. Geochemistry International, 53(10), 892–902.10.1134/S0016702915080108Search in Google Scholar

Zozulya, D.R., Lyalina, L.M., and Savchenko, Y.E. (2017) Britholite-group minerals as sensitive indicators of changing fluid composition during pegmatite formation: evidence from the Keivy alkaline province, Kola peninsula, NW Russia. Mineralogy and Petrology, 111(4), 511–522.10.1007/s00710-017-0493-3Search in Google Scholar

Received: 2019-01-19
Accepted: 2019-08-20
Published Online: 2019-11-29
Published in Print: 2019-12-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.2138/am-2019-6969/html
Scroll to top button