Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Over half of the far-infrared background light comes from galaxies at z ≥ 1.2

Abstract

Submillimetre surveys during the past decade have discovered a population of luminous, high-redshift, dusty starburst galaxies1,2,3,4,5,6,7,8. In the redshift range 1 ≤ z ≤ 4, these massive submillimetre galaxies go through a phase characterized by optically obscured star formation at rates several hundred times that in the local Universe. Half of the starlight from this highly energetic process is absorbed and thermally re-radiated by clouds of dust at temperatures near 30 K with spectral energy distributions peaking at 100 μm in the rest frame9. At 1 ≤ z ≤ 4, the peak is redshifted to wavelengths between 200 and 500 μm. The cumulative effect of these galaxies is to yield extragalactic optical and far-infrared backgrounds with approximately equal energy densities. Since the initial detection of the far-infrared background (FIRB)10, higher-resolution experiments have sought to decompose this integrated radiation into the contributions from individual galaxies. Here we report the results of an extragalactic survey at 250, 350 and 500 μm. Combining our results at 500 μm with those at 24 μm, we determine that all of the FIRB comes from individual galaxies, with galaxies at z ≥ 1.2 accounting for 70% of it. As expected, at the longest wavelengths the signal is dominated by ultraluminous galaxies at z > 1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map showing the signal-to-noise ratio combination of all three BLAST bands for the entire BLAST GOODS-South observation.
Figure 2: The differential source counts at a variety of submillimetre and far-infrared wavelengths.

Similar content being viewed by others

References

  1. Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5–L9 (1997)

    Article  ADS  Google Scholar 

  2. Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Barger, A. J. et al. Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift. Nature 394, 248–251 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Greve, T. R. et al. A 1200-µm MAMBO survey of ELAISN2 and the Lockman Hole - I. Maps, sources and number counts. Mon. Not. R. Astron. Soc. 354, 779–797 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Coppin, K. et al. The SCUBA Half-Degree Extragalactic Survey - II. Submillimetre maps, catalogue and number counts. Mon. Not. R. Astron. Soc. 372, 1621–1652 (2006)

    Article  ADS  Google Scholar 

  6. Eales, S. et al. The Canada-UK Deep Submillimeter Survey. IV. The survey of the 14 hour field. Astron. J. 120, 2244–2268 (2000)

    Article  ADS  Google Scholar 

  7. Borys, C., Chapman, S., Halpern, M. & Scott, D. The Hubble Deep Field North SCUBA Super-map - I. Submillimetre maps, sources and number counts. Mon. Not. R. Astron. Soc. 344, 385–398 (2003)

    Article  ADS  Google Scholar 

  8. Laurent, G. T. et al. The Bolocam Lockman Hole Millimeter-Wave Galaxy Survey: galaxy candidates and number counts. Astrophys. J. 623, 742–762 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Coppin, K. et al. The SCUBA Half Degree Extragalactic Survey - VI. 350-µm mapping of submillimetre galaxies. Mon. Not. R. Astron. Soc. 384, 1597–1610 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Puget, J.-L. et al. Tentative detection of a cosmic far-infrared background with COBE. Astron. Astrophys. 308, L5–L8 (1996)

    ADS  Google Scholar 

  11. Griffin, M. et al. The Herschel-SPIRE instrument and its capabilities for extragalactic astronomy. Adv. Space Res. 40, 612–619 (2007)

    Article  ADS  Google Scholar 

  12. Pascale, E. et al. The Balloon-borne Large Aperture Submillimeter Telescope: BLAST. Astrophys. J. 681, 400–414 (2008)

    Article  ADS  Google Scholar 

  13. Giavalisco, M. et al. The Great Observatories Origins Deep Survey: initial results from optical and near-infrared imaging. Astrophys. J. 600, L93–L98 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Lehmer, B. D. et al. The Extended Chandra Deep Field-South Survey: Chandra point-source catalogs. Astrophys. J. Suppl. Ser. 161, 21–40 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Lonsdale, C. J. et al. SWIRE: The SIRTF Wide-Area Infrared Extragalactic Survey. Publ. Astron. Soc. Pacif. 115, 897–927 (2003)

    Article  ADS  Google Scholar 

  16. Lagache, G. et al. Polycyclic aromatic hydrocarbon contribution to the infrared output energy of the Universe at z ≈ 2. Astrophys. J. Suppl. Ser. 154, 112–117 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Rowan-Robinson, M. The star formation history of the Universe: an infrared perspective. Astrophys. J. 549, 745–758 (2001)

    Article  ADS  Google Scholar 

  18. Eddington, A. S. The correction of statistics for accidental error. Mon. Not. R. Astron. Soc. 100, 354–361 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  19. Condon, J. J. Confusion and flux-density error distributions. Astrophys. J. 188, 279–286 (1974)

    Article  ADS  Google Scholar 

  20. Papovich, C. et al. The 24 micron source counts in deep Spitzer Space Telescope surveys. Astrophys. J. Suppl. Ser. 154, 70–74 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Fixsen, D. J., Dwek, E., Mather, J. C., Bennett, C. L. & Shafer, R. A. The spectrum of the extragalactic far-infrared background from the COBE FIRAS observations. Astrophys. J. 508, 123–128 (1998)

    Article  ADS  Google Scholar 

  22. Dole, H. et al. The cosmic infrared background resolved by Spitzer. Contributions of midinfrared galaxies to the far-infrared background. Astron. Astrophys. 451, 417–429 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Knudsen, K. K., van der Werf, P. P. & Kneib, J.-P. Probing the submillimetre number counts at f850µm < 2 mJy. Mon. Not. R. Astron. Soc. 384, 1611–1626 (2008)

    Article  ADS  Google Scholar 

  24. Grazian, A. et al. The GOODS-MUSIC sample: a multicolour catalog of near-IR selected galaxies in the GOODS-South field. Astron. Astrophys. 449, 951–968 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Luo, B. et al. The Chandra Deep Field-South Survey: 2 ms source catalogs. Astrophys. J. Suppl. Ser. 179, 19–36 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Hickox, R. C. & Markevitch, M. Absolute measurement of the unresolved cosmic X-ray background in the 0.5–8 keV band with Chandra. Astrophys. J. 645, 95–114 (2006)

    Article  ADS  Google Scholar 

  27. Smail, I., Ivison, R. J., Blain, A. W. & Kneib, J.-P. The nature of faint submillimetre-selected galaxies. Mon. Not. R. Astron. Soc. 331, 495–520 (2002)

    Article  ADS  Google Scholar 

  28. Dole, H. et al. Far-infrared source counts at 70 and 160 microns in Spitzer deep surveys. Astrophys. J. Suppl. Ser. 154, 87–92 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of NASA, the US National Science Foundation Office of Polar Programs, the Canadian Space Agency, the Natural Sciences and Engineering Research Council of Canada and the UK Science and Technology Facilities Council. We are grateful to B. Magnelli for help with the FIDEL 24-µm data. This research was enabled by the WestGrid computing resources and the SIMBAD and NASA/IPAC databases. We thank the Columbia Scientific Balloon Facility, Ken Borek Air Ltd and the mountaineers of McMurdo Station for their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Devlin.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Tables S1-S4, Supplementary Figures S1-S8 and supplementary References. (PDF 500 kb)

Supplementary Data

This file contains Source list 1- BLASTgoods-s2006-12-21_cat250_2008-11-24_3sig_bid.dat. (TXT 187 kb)

Supplementary Data

This file contains Source List 2 - BLASTgoods-s2006-12-21_cat350_2008-11-24_3sig_bid.dat (TXT 153 kb)

Supplementary Data

This file contains Source List 3 - BLASTgoods-s2006-12-21_cat500_2008-11-24_3sig_bid.dat (TXT 118 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devlin, M., Ade, P., Aretxaga, I. et al. Over half of the far-infrared background light comes from galaxies at z ≥ 1.2. Nature 458, 737–739 (2009). https://doi.org/10.1038/nature07918

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07918

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing