Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eddy momentum flux and its contribution to the Southern Ocean momentum balance

Abstract

A LARGE amount of momentum is transferred to the Southern Ocean by strong westerly winds. Analytical and numerical models have suggested that transient eddies may be important in transporting this momentum away from the region of wind forcing, either horizontally1or vertically downwards where it is balanced by bottom topographic drag2–5. There are, however, few long-term in situ observations of horizontal eddy momentum flux6–8, and no large-scale measurements of vertical eddy fluxes, to test these models. As a result, the momentum balance of the Antarctic circumpolar current (ACC) remains uncertain, and the role of eddies controversial. Here we use Geosat satellite altimeter data to resolve directional eddy kinetic energy and horizontal eddy momentum flux in the ACC on fine spatial and temporal scales. The complex spatial distribution of surface eddy momentum flux is strongly influenced by bottom topography. The horizontal eddy momentum flux tends generally to concentrate the mean flow, although some regions of divergence are observed. Our results show that the zonally averaged horizontal eddy momentum flux from transient eddies is an order of magnitude too small, and in the wrong direction to directly balance the eastward momentum input from wind1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gill, A. E. J. Fluid Mech. 32, 465–488 (1968).

    Article  ADS  Google Scholar 

  2. Munk, W. H. & Palmen, E. Tellus 3, 53–55 (1951).

    Article  ADS  Google Scholar 

  3. McWilliams, J. C., Holland, W. R. & Chow, J. H. S. Dynam. Atmos. Oceans 2, 213–291 (1978).

    Article  ADS  Google Scholar 

  4. Wolff, J.-O., Maier-Reimer, E. & Olbers, D. J. J. phys. Oceanogr. 21, 236–264 (1991).

    Article  ADS  Google Scholar 

  5. Johnson, G. C. & Bryden, H. L. Deep Sea Res. 36, 39–53 (1989).

    Article  ADS  Google Scholar 

  6. Piola, A. R., Figueroa, H. A. & Bianchi, A. A. J. geophys. Res. 92, 5101–5114 (1987).

    Article  ADS  Google Scholar 

  7. Bryden, H. L. & Heath, R. A. Prog. Oceanogr. 14, 65–87 (1985).

    Article  ADS  Google Scholar 

  8. Luyten, J. et al. Woods Hole Oceanogr. Inst. Tech. Rep. WHO1-90-30 (1990).

  9. Chelton, D. B., Schlax, M. G., Witter, D. L. & Richman, J. G. J. geophys. Res. 95, 17877–17903 (1990).

    Article  ADS  Google Scholar 

  10. Van Gysen, H., Coleman, R., Morrow, R. A., Hirsch, B. & Rizos, C. J. geophys. Res. 97, 2265–2277 (1992).

    Article  ADS  Google Scholar 

  11. Parke, M. E., Stewart, R. H., Farless, D. L. & Cartwright, D. E. J. geophys. Res. 92, 11693–11707 (1987).

    Article  ADS  Google Scholar 

  12. Sciremammano, F. Jr. J. phys. Oceanogr. 9, 221–226 (1979).

    Article  ADS  Google Scholar 

  13. Inoue, M. J. phys. Oceanogr. 15, 1157–1181 (1985).

    Article  ADS  Google Scholar 

  14. Daniault, N. & Menard, Y. J. geophys. Res. 90, 11877–11899 (1985).

    Article  ADS  Google Scholar 

  15. Patterson, S. L. J. phys. Oceanogr. 15, 865–884 (1985).

    Article  ADS  Google Scholar 

  16. Treguier, A. M. & McWilliams, J. C. J. phys. Oceanogr. 20, 321–343 (1990).

    Article  ADS  Google Scholar 

  17. Sandwell, D. T. & Zhang, B. J. geophys. Res. 94, 17971–17984 (1989).

    Article  ADS  Google Scholar 

  18. Tai, C.-K. & White, W. B. J. phys. Oceanogr. 20, 1761–1777 (1990).

    Article  ADS  Google Scholar 

  19. Coleman, R. Austr. J. Mar. Freshwater Res. 35, 619–633 (1984).

    Article  Google Scholar 

  20. Mulhearn, P. J. J. phys. Oceanogr. 17, 1148–1155 (1987).

    Article  ADS  Google Scholar 

  21. Nishida, H. & White, W. B. J. phys. Oceanogr. 12, 160–170 (1982).

    Article  ADS  Google Scholar 

  22. Schmitz, W. J. J. phys. Oceanogr. 12, 208–210 (1982).

    Article  ADS  Google Scholar 

  23. Trenberth, K. E., Large, W. G. & Olsen, J. G. J. phys. Oceanogr. 20, 1742–1760 (1990).

    Article  ADS  Google Scholar 

  24. Gordon, A. L. & Molinelli, E. J. Southern Ocean Atlas: Thermohaline and Chemical Distributions and the Atlas Data Set (Columbia Univ. Press, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrow, R., Church, J., Coleman, R. et al. Eddy momentum flux and its contribution to the Southern Ocean momentum balance. Nature 357, 482–484 (1992). https://doi.org/10.1038/357482a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357482a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing