Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Associative cellulolysis and dinitrogen fixation by co-cultures of Trichoderma harzianum and Clostridium butyricum

Abstract

Lignocelluloses are a major source of carbon into ecosystems and represent the principal constituent of agricultural, forestry and municipal wastes. The large proportion of cellulose and hemicellulose in these wastes leads to a high C:N ratio which often results in N limitation during decomposition. This could be overcome if the decomposer organisms combined both the cellulolytic (cellulase) and N2-fixing (nitrogenase) functions. With the exception of bacteria isolated from the specialized environment of marine shipworms1,2, no organism possessing both cellulase and nitrogenase has yet been isolated from nature or genetically engineered. We now report the cooperative degradation of cellulose in which the fungus Trichoderma harzianum provides the cellulase function and an obligately anaerobic bacterium, Clostridium butyricum, provides the nitrogenase function. These co-cultures utilized cellulose as the sole carbon source for N2 fixation, resulting in a substantial increase in the rate of substrate decomposition compared with the fungus alone. The co-cultures developed in apparently aerobic environments, demonstrating that aerobes and anaerobes can co-exist, the aerobe presumably providing respiratory protection to the anaerobe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carpenter, E. J. & Culliney, J. I. Science 187, 551–552 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Waterbury, J. B., Calloway, C. B. & Turner, R. D. Science 221, 1401–1403 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Yoneyamu, T., Lee, K. K. & Yoshida, T. Soil Sci. Pl. Nutr. 23, 287–295 (1977).

    Article  Google Scholar 

  4. Rice, W. A. & Paul, E. A. Can. J. Microbiol. 18, 715–723 (1972).

    Article  CAS  Google Scholar 

  5. Lynch, J. M. & Harper, S. H. T. J gen. Microbiol. 129, 251–253 (1983).

    Google Scholar 

  6. Harper, S. H. T. & Lynch, J. M. J. appl. Bact. (in the press).

  7. Haines, E. B. & Hanson, R. B. J. exp. mar. Biol. Ecol. 40, 27–40 (1979).

    Article  CAS  Google Scholar 

  8. Aho, P. E., Seidler, R. S., Evans, H. J. & Nelson, A. D. in Proc. Int. Symp. Nitrogen Fixation (eds Newton, W. E. & Nynman, C. J.) 629–690 (Washington State University Press, Pullman, 1976).

  9. Silvester, B., Sollins, T., Verhoeven, T. & Cline, S. P. Can. J. For Res. 12, 646–652 (1982).

    Article  Google Scholar 

  10. Barrow, N. J. & Jenkinson, D. S. Pl. Soil 16, 258–262 (1962).

    Article  CAS  Google Scholar 

  11. Buresh, R. J., Casselman, M. E. & Patrick, W. H. Adv. Agron. 33, 149–192 (1980).

    Article  CAS  Google Scholar 

  12. Magdoff, F. R. & Bouldin, D. R. Pl. Soil 33, 49–61 (1970).

    Article  Google Scholar 

  13. Jensen, H. L. Proc. Linn. Soc. N.S.W. 66, 239–249 (1941).

    CAS  Google Scholar 

  14. Vartiovaara, U. J. Sci. agric. Soc. Finl. 10, 241–264 (1938).

    CAS  Google Scholar 

  15. Postgate, J. R. – Hill, S. in Microbial Ecology; A Conceptual Approach (eds Lynch, J. M. & Poole, N. J.) 191–213 (Blackwell, Oxford, 1979).

    Google Scholar 

  16. Lynch, J. M., Harper, S. H. T., Chapman, S. J. & Veal, D. A. in Microbial Methods for Environmental Biotechnology (eds Grainger, J. M. & Lynch, J. M. (Academic, New York, in the press).

  17. Dalton, H. & Postgate, J. R. J. gen. Microbiol. 56, 307–319 (1969).

    Article  CAS  Google Scholar 

  18. Postgate, J. R. in Methods in Microbiology Vol. 6B in (eds Norris, J. R. & Ribbons, D. W.) 343–356 (Academic, London, 1972).

    Google Scholar 

  19. Lynch, J. M. J. appl. Bact. 42, 81–87 (1977).

    Article  CAS  Google Scholar 

  20. Sedmak, J. J. & Grossberg, S. E. Analyt. Biochem. 79, 544–552 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veal, D., Lynch, J. Associative cellulolysis and dinitrogen fixation by co-cultures of Trichoderma harzianum and Clostridium butyricum. Nature 310, 695–697 (1984). https://doi.org/10.1038/310695a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310695a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing