Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection

Abstract

Cosmic γ-ray bursts have now been firmly established as one of the most powerful phenomena in the Universe, releasing almost the rest-mass energy of a neutron star within the space of a few seconds (ref. 1). The two most popular models to explain γ-ray bursts are the coalescence of two compact objects such as neutron stars or black holes, or the catastrophic collapse of a massive star in a very energetic supernova-like explosion2,3. Here we show that, about three weeks after the γ-ray burst of 26 March 1998, the transient optical source associated with the burst brightened to about 60 times the expected flux, based upon an extrapolation of the initial light curve. Moreover, the spectrum changed dramatically, with the colour becoming extremely red. We argue that the new source is an underlying supernova. If our hypothesis is true then this provides evidence linking cosmologically located γ-ray bursts with deaths of massive stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the R-band light curve of the afterglow of GRB980326.
Figure 2: The spectra of the transient on March 29.27 and April 23.25 1998 UT.

Similar content being viewed by others

References

  1. Kulkarni,S. R. et al. The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999. Nature 398, 389 –394 (1999).

    Article  CAS  ADS  Google Scholar 

  2. MacFadyen,A. & Woosley,S. E. Collapsars—gamma-ray bursts and explosions in “Failed Supernovae”. Preprint astro-ph/9810274 at 〈http://xxx.lanl.gov〉 (1999).

  3. Paczyński,B. Are gamma-ray bursts in star-forming regions? Astrophys. J. 494, L45–L48 (1998).

    Article  ADS  Google Scholar 

  4. Celidonio,G. et al. GRB 980326. IAU Circ. No. 6851 ( 1998).

  5. Groot,P. J. et al. The rapid decay of the optical emission from GRB 980326 and its possible implications. Astrophys. J. 502, L123–L127 (1998).

    Article  ADS  Google Scholar 

  6. Valdes,F., Jannuzi,B. & Rhoads,J. GRB980326, optical observations. GCN Circ. No 56 (1998).

  7. Mao,S. & Mo,H. J. The nature of the host galaxies for gamma-ray bursts. Astron. Astrophys. 339, L1–L4 (1998).

    ADS  Google Scholar 

  8. Hogg,D. W. & Fruchter,A. S. The faint-galaxy hosts of gamma-ray bursts. Astrophys. J. 520, 54– 58 (1999).

    Article  ADS  Google Scholar 

  9. Djorgovski,S. G. et al. The optical counterpart of the gamma-ray burst GRB 970508. Nature 387, 876–878 (1997).

    Article  CAS  ADS  Google Scholar 

  10. Sari,R., Piran,T. & Narayan,R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17– L20 (1998).

    Article  ADS  Google Scholar 

  11. Mészáros,P., Rees,M. J. & Wijers,R. A. M. J. Viewing angle and environment effects in gamma-ray bursts: sources of afterglow diversity. Astrophys. J. 499, 301–308 (1998).

    Article  ADS  Google Scholar 

  12. Chevalier,R. A. & Li, Z.-Y. Gamma-ray burst environments and progenitors. Astrophys. J. 520, L29– L32 (1999).

    Article  ADS  Google Scholar 

  13. Halpern,J. P., Kemp,J., Piran,T. & Bershady,M. A. The rapidly fading optical afterglow of GRB 980519. Astrophys. J. 517, L105–L108 (1999).

    Article  ADS  Google Scholar 

  14. Sari,R., Piran,T. & Halpern,J. P. Jets in gamma-ray bursts. Astrophys. J. 519, L17–L20 (1999).

    Article  ADS  Google Scholar 

  15. Piro,L. et al. The X-ray afterglow of the gamma-ray burst of 1997 May 8: spectral variability and possible evidence of an iron line. Astrophys. J. 514, L73–L77 ( 1999).

    Article  ADS  Google Scholar 

  16. Panaitescu,A., Mészáros,P. & Rees,M. J. Multiwavelength afterglows in gamma-ray bursts: refreshed shock and jet effects. Astrophys. J. 503, 314–324 (1998).

    Article  ADS  Google Scholar 

  17. Dai,Z. G. & Lu,T. Environment and energy injection effects in GRB afterglows. Preprint astro-ph/9906109 at 〈http://xxx.lanl.gov〉 (1999).

  18. Li,L. & Paczyński,B. Transient events from neutron star mergers. Astrophys. J. 507, L59– L62 (1998).

    Article  ADS  Google Scholar 

  19. Galama,T. J. et al. An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature 395, 670– 672 (1998).

    Article  CAS  ADS  Google Scholar 

  20. Kulkarni,S. R. et al. Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998. Nature 395, 663–669 (1998).

    Article  CAS  ADS  Google Scholar 

  21. Kirshner,R. P. et al. Supernova 1994I in NGC 5194. IAU Circ. No. 5981 (1994).

  22. Iwamoto,K. et al. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature 395, 672– 674 (1998).

    Article  CAS  ADS  Google Scholar 

  23. Germany,L. M. et al. SN 1997cy/GRB 970514—a new piece in the GRB puzzle? Preprint astro-ph/9906096 at 〈http://xxx.lanl.gov〉 ( 1999).

  24. Reichart,D. GRB 970228 revisited: evidence for a supernova in the light curve and late spectral energy distribution of the afterglow. Astrophys. J. 521, L111–L115 (1999).

    Article  ADS  Google Scholar 

  25. Oke,J. B. et al. The Keck low-resolution imaging spectrometer. Publ. Astron. Soc. Pacif. 107, 375–385 (1995).

    Article  ADS  Google Scholar 

  26. Fukugita,M., Shimasaku,K. & Ichikawa, T. Galaxy colors in various photometric band systems. Publ. Astron. Soc. Pacif. 107, 945– 958 (1995).

    Article  ADS  Google Scholar 

  27. Landolt,A. UBVRI photometric standard stars in the magnitude range 11.5–16.0 around the celestial equator. Astron. J. 104, 340 –371 (1992).

    Article  ADS  Google Scholar 

  28. Schlegel,D. J., Finkbeiner,D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  29. McKenzie,E. H. & Schaefer,B. E. The late time light curve of SN 1998bw associated with GRB980425. Publ. Astron. Soc. Pacif. 762, 964–968 (1999).

    Article  ADS  Google Scholar 

  30. Schmidt,B. P. et al. The high-z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 507, 46–63 (1998).

    Article  ADS  Google Scholar 

  31. Massey,P., Strobel,K., Barnes,J. V. & Anderson,E. Spectrophotometric standards. Astrophys. J. 328, 315– 333 (1988).

    Article  ADS  Google Scholar 

  32. Oke,J. B. & Gunn,J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713 –717 (1983).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. H. van Kerkwijk and S. A. Stanford for observations at the Keck II telescope and R. Sari for discussions. We also acknowledge the support from the staff at the Keck Observatory. The observations reported here were obtained at the W. M. Keck Observatory, made possible by the financial support of the W. M. Keck Foundation, which is operated by the California Association for Research in Astronomy, a scientific partnership among California Institute of Technology, the University of California and NASA. S.R.K. and A.V.F. were supported by the NSF and NASA. S.G.D. acknowledges partial support from the Bressler Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Bloom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, J., Kulkarni, S., Djorgovski, S. et al. The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection. Nature 401, 453–456 (1999). https://doi.org/10.1038/46744

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46744

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing