Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott–Aldrich syndrome’ protein

Abstract

The Rho-family GTP-hydrolysing proteins (GTPases), Cdc42, Rac and Rho, act as molecular switches in signalling pathways that regulate cytoskeletal architecture, gene expression and progression of the cell cycle1. Cdc42 and Rac transmit many signals through GTP-dependent binding to effector proteins containing a Cdc42/Rac-interactive-binding (CRIB) motif2. One such effector, the Wiskott–Aldrich syndrome protein (WASP), is postulated to link activation of Cdc42 directly to the rearrangement of actin3. Human mutations in WASP cause severe defects in haematopoletic cell function, leading to clinical symptoms of thrombocytopenia, immunodeficiency and eczema. Here we report the solution structure of a complex between activated Cdc42 and a minimal GTPase-binding domain (GBD) from WASP. An extended amino-terminal GBD peptide that includes the CRIB motif contacts the switch I, β2 and α5 regions of Cdc42. A carboxy-terminal β-hairpin and α-helix pack against switch II. The Phe-X-His-X2-His portion of the CRIB motif and the α-helix appear to mediate sensitivity to the nucleotide switch through contacts to residues 36–40 of Cdc42. Discrimination between the Rho-family members is likely to be governed by GBD contacts to the switch I and α5 regions of the GTPases. Structural and biochemical data suggest that GBD-sequence divergence outside the CRIB motif may reflect additional regulatory interactions with functional domains that are specific to individual effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment and structure overlay of the Cdc42–WASP complex.
Figure 2: GTPase–effector interactions.
Figure 3: Selected regions of a 13C-filtered NOESY spectrum recorded in D2O.

Similar content being viewed by others

References

  1. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998)

    Article  ADS  CAS  Google Scholar 

  2. Burbelo, P. D., Drechsel, D. & Hall, A. Aconserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270, 29071–29074 (1995).

    Article  CAS  Google Scholar 

  3. Symons, M.et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84, 723–734 (1996).

    Article  CAS  Google Scholar 

  4. Rudolph, M.et al. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J. Biol. chem. 273, 18067–18076 (1998).

    Article  CAS  Google Scholar 

  5. Nassar, N.et al. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Huang, L., Hofer, F., Martin, G. & Kim, S. Structural basis for the interaction of Ras with RalGDS. Nature Struct. Biol. 5, 422–426 (1998).

    Article  CAS  Google Scholar 

  7. Feltham, J.et al. Definition of the switch surface in the solution structure of Cdc42Hs. Biochemistry 36, 8755–8766 (1997).

    Article  CAS  Google Scholar 

  8. Leonard, D. A.et al. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3. Biochemistry 36, 1173–1180 (1997).

    Article  CAS  Google Scholar 

  9. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Lamarche, N.et al. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529 (1996).

    Article  CAS  Google Scholar 

  11. Manser, E., Leung, T., Salihuddin, H., Tan, L. & Lim, L. Anon-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 363, 364–367 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Leung, T., Chen, X. Q., Tan, I., Manser, E. & Lim, L. Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol. Cell Biol. 18, 130–140 (1998).

    Article  CAS  Google Scholar 

  13. Diekmann, D., Nobes, C. D., Burbelo, P. D., Abo, A. & Hall, A. Rac GTPase interacts with GAPs and target proteins through multiple effector sites. EMBO J. 14, 5297–5305 (1995).

    Article  CAS  Google Scholar 

  14. Hirshberg, M., Stockley, R., Dodson, G. & Webb, M. The crystal structure of human rac1, a member of the rho-family complexed with a GTP analogue. Nature Struct. Biol. 4, 147–152 (1997).

    Article  CAS  Google Scholar 

  15. Ihara, K.et al. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J. Biol. Chem. 273, 9656–9666 (1998).

    Article  CAS  Google Scholar 

  16. Nassar, N.et al. Ras/Rap effector specificity determined by charge reversal. Nature Struct. Biol. 3, 723–729 (1996).

    Article  CAS  Google Scholar 

  17. Mott, H. R.et al. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature 399, 384–388 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Guo, W., Sutcliffe, M., Cerione, R. & Oswald, R. Identification of the binding surface on Cdc42Hs for p21-activated kinase. Biochemistry 37, 14030–14037 (1998).

    Article  CAS  Google Scholar 

  19. Brown, J. L.et al. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr. Biol. 6, 598–605 (1996).

    Article  CAS  Google Scholar 

  20. Rudel, T. & Bokoch, G. M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574 (1997).

    Article  CAS  Google Scholar 

  21. Banin, S.et al. Wiskott-Aldrich syndrome protein (WASP) is a binding partner for c-Src family protein-tyrosine kinases. Curr. Biol. 6, 981–988 (1996).

    Article  CAS  Google Scholar 

  22. Bagrodia, S., Taylor, S. J., Jordon, K. A., Van Aelst, L. & Cerione, R. A. Anovel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633–23636 (1998).

    Article  CAS  Google Scholar 

  23. Gardner, K. & Kay, L. Production and incorporation of 15N, 13C, 2H(1H-δ methyl) isoleucine into proteins for multidimensional NMR studies. J. Am. Chem. Soc. 119, 7599–7600 (1997).

    Article  CAS  Google Scholar 

  24. Yamazaki, T., Lee, W., Arrowsmith, C., Muhandiriam, D. & Kay, L. Asuite of triple resonance NMR experiments for the backbone 15N, 13C, 2H labeled proteins with high sensitivity. J. Am. Chem. Soc. 116, 11655–11666 (1994).

    Article  CAS  Google Scholar 

  25. Gardner, K., Konrat, R., Rosen, M. & Kay, L. A(H)C(CO)NH-TOCSY pulse scheme for sequential assignment of protonated methyl groups in otherwise deuterated 15N, 13C labeled proteins. J. Biomol. NMR 8, 351–356 (1996).

    Article  CAS  Google Scholar 

  26. Brunger, A. T. Crystallography and NMR system. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  27. Nilges, M., Macias, M. J., O'Donoghue, S. I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the plackstrin homology domain from beta-spectrin. J. Mol. Biol. 269, 408–422 (1997).

    Article  CAS  Google Scholar 

  28. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR, 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  29. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  30. Carson, M. J. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y.M. Chook, A. Kim and J. Goldberg for discussion and for critically reading the manuscript; R. Cerione for Cdc42 cDNA; R. Goody for initial sample of GMPPCP and for advice on synthesis of the nucleotide; L. Kay for many of the NMR pulse sequences; F. Delaglio for unpublished TALOS software; I. Armitage and D. Live for assistance with data collection at the Structural Biology NMR Resource at the University of Minnesota Medical School; J. Hubbard for computer-system support; and S. Freihaut for administrative assistance. B.A. is supported by a grant from the US Army Breast Cancer program. M.K.R. acknowledges support from the NIH (PECASE program), the Arnold and Mabel Beckman Foundation, and the Sidney Kimmel Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul-Manan, N., Aghazadeh, B., Liu, G. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott–Aldrich syndrome’ protein. Nature 399, 379–383 (1999). https://doi.org/10.1038/20726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20726

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing